B. E.	MECHANICAL EN	GINEERING		
Choice Based Credit Sys	tem (CBCS) and O	utcome Based Education	(OBE)	
	SEMESTER -	V		
MAN			40	
Course Code	18ME51		40	
Teaching Hours/ Week (L:T:P)	2:2:0	SEE Marks	60	
Credits	03	Exam Hours	03	
Course Learning Objectives:	the fundamental	an anato and aviacial as of	monogomont, the hesis	
To help the students to understand	the fundamental	concepts and principles of	management; the basic	
roles, skills, functions of manageme	nt, various organi	zational structures and bas	sic knowledge of	
marketing.				
 To impart knowledge, with respect 	to concepts, princ	iples and practical applicat	tions of Economics,	
which govern the functioning of a fi	rm/organization u	nder different market con	ditions.	
Module-1				
Management: Introduction - Meaning - nat	ure and character	istics of Management, Sco	ope and Functional areas	
of management - Management as a scier	nce, art of profes	sion - Management & A	dministration - Roles of	
Management, Levels of Management, Deve	lopment of Mana	gement Thought- early ma	nagement approaches –	
Modern management approaches. Planning	g: Nature, importa	ance and purpose of planr	ning process Objectives -	
Types of plans (Meaning Only) - Decisior	n making Importa	nce of planning - steps	in planning & planning	
premises - Hierarchy of plans.				
Module-2				
Organizing and Staffing: Nature and purpos	e of organization	Principles of organization	- Types of organization -	
Departmentation Committees Centralization	on Vs Decentrali	zation of authority and	responsibility - Span of	
control - MBO and MBE (Meaning Only) Na	ture and importar	ice of staffingProcess of	Selection & Recruitment	
(in brief). Directing & Controlling: Meaning and nature of directing Leadership styles, Motivation Theories,				
Communication - Meaning and importance - coordination, meaning and importance and Techniques of Co				
Urgination. Ivieaning and steps in controlling - Essentials of a sound control system - Methods of establishing				
Modulo 2				
Introduction: Engineering and economics	Problem solving a	nd decision making Laws	of demand and supply	
Difference between Microeconomics & Ma	croeconomics eq	uilibrium between demar	ad & supply electicity of	
demand, price elasticity, income elasticity.	Law of Returns. Ir	terest and interest factor	s. simple and compound	

Discussion and problems. Module-4

Present, future and annual worth and rate of returns: Basic present worth comparisons, Present worthequivalence, Assets with unequal lives and infinites lives, future worth comparisons, payback comparisons, Equivalent annual worth comparisons, situations for annual worth comparisons. Asset life, Rate of return, minimum acceptable rate of return, IRR anomalies and misconceptions, Cost of capital, comparisons of all present future and annual worth with IRR, product costing, Discussions and problems.

interest, Cash flow diagrams, personal loans and EMI payment calculation with flexible interest rates,

Module-5

Costing and depreciation: Components of costs, estimation of selling price, marginal cost, first cost, all kinds of overheads, indirect cost estimation with depreciation, mensuration and estimation of material cost, cost estimation of mechanical process, idling time. Product costing (approaches to product costing), causes of depreciation, methods of computing depreciation charges, straight line method, declining balance method, sum of years method, sinking fund method, service output methods, taxation concepts, personal income taxes and corporate taxes, Discussions and problems.

Course outcomes: At the end of the course, the student will be able to:

CO1: Understand needs, functions, roles, scope and evolution of Management

CO2: Understand importance, purpose of Planning and hierarchy of planning and also54 nalyse its types.

CO3: Discuss Decision making, Organizing, Staffing, Directing and Controlling.

CO4: Select the best economic model from various available alternatives.

CO5: Understand various interest rate methods and implement the suitable one.

CO6: Estimate various depreciation values of commodities.

CO7: Prepare the project reports effectively.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the	Edition and Year
Textboo	ok/s			
1	Mechanical estimation	T.R. Banga& S.C. Sharma	Khanna Publishers	17th edition
2	Engineering Economy	Riggs J.L	McGraw Hill	4th edition
3	Engineering Economy	Thuesen H.G	PHI	2002
4	Principles of Management	Tripathy and Reddy	Tata McGraw Hill	3 rd edition 2006
Textboo	ok/s			
1	Mechanical estimation	T.R. Banga& S.C. Sharma	Khanna Publishers	17th edition
2	Engineering Economy	Riggs J.L	McGraw Hill	4th edition
3	Engineering Economy	Thuesen H.G	PHI	2002
4	Principles of Management	Tripathy and Reddy	Tata McGraw Hill	3 rd edition 2006

B. E. MECHANICAL ENGINEERING						
Choice Based Credit Sy	vstem (CBCS) and Outcome Ba	ised Education (C	DBE)			
	SEMESTER - V					
DE	DESIGN OF MACHINE ELEMENTS I					
Course Code	18ME52	CIE Marks	40			
Teaching Hours/Week (L:T:P)	3:2:0	SEE Marks	60			
Credits	04	Exam Hours	03			
Course Learning Objectives:						
To understand the various steps in	nvolved in the Design Process.					
To explain the principles involved	in design of machine element	s, subjected to di	ifferent kinds of forces,			
from the considerations of streng	th, rigidity, functional and mar	iufacturing requir	rements.			
 To understand and interpret diffe machine elements. 	rent failure modes and applica	tion of appropria	ite criteria for design of			
To learn to use national and inte	rnational standards, standard	practices, standa	ard data, catalogs, and			
standard components used in des	ign of machine elements.	,	, 0,			
 Develop the capability to design 	elements like shafts, couplir	ngs, welded joint	s, screwed joints, and			
power screws.	<i>,</i> 1	0,	· · · ·			
Module-1						
Introduction: Design Process: Definition	of design, phases of design, a	nd review of eng	ineering materials and			
their properties and manufacturing proces	sses; use of codes and standar	ds, selection of p	referred sizes.			
Review of axial, bending, shear and torsio	n loading on machine compor	ents, combined l	oading, two- and three			
dimensional stresses, principal stresses, st	ress tensors, Mohr's circles.					
Design for static strength: Factor of safety	and service factor.					
Failure mode: definition and types. , F	ailure of brittle and ductile	materials; even	and uneven materials;			
Theories of failure: maximum normal str	ess theory, maximum shear	stress theory, dis	tortion energy theory,			
strain energy theory, Columba –Mohr	theory and modified Mohr'	s theory. Stress	concentration, stress			
concentration factor and methods of redu	cing stress concentration.					
Module-2						
Impact Strength: Introduction, Impact stre	esses due to axial, bending and	torsion loads.				
Fatigue loading: Introduction to fatigue	failure, Mechanism of fatigu	e failure, types o	of fatigue loading, S-N			
Diagram, Low cycle fatigue, High cycle fati	gue, Endurance limit.	Santa Nistala anas	iti itu. Cadan bana and			
Modifying factors: size effect, surface effect	method loading sumulative f	rects Notch sens	itivity, Soder berg and			
Module-3	mbined loading, cumulative is	aligue uamage, a	nu miner's equation.			
Design of shafts: Torsion of shafts solid	and hollow shaft design with	steady loading	hased on strength and			
rigidity, ASME and BIS codes for power tr	ansmission shafting, design of	shafts subjected	to combined bending,			
torsion and axial loading. Design of shafts	subjected to fluctuating loads	-				
Design of keys and couplings :Keys: Type	s of keys and their application	ns, design conside	erations in parallel and			
tapered sunk keys, Design of square and r	ectangular sunk keys.					
Couplings: Rigid and flexible coupling-type	es and applications, design of	Flange coupling,	and Bush and Pin type			
coupling.						
Module-4						
Design of Permanent Joints: Types of permanent joints-Riveted and Welded Joints.						
Riveted joints: Types of rivets, rivet mate	rials, Caulking and fullering, a	nalysis of riveted	joints, joint efficiency,			
failures of riveted joints, boiler joints, riveted brackets.						
Welded joints: Types, strength of butt and fillet welds, eccentrically loaded welded joints						
Module-5						
Design of Temporary Joints: Types of tem	porary joints- cotter joints, kn	uckle joint and fa	steners. Design of			
Cotter and Knuckle Joint.						
Threaded Fasteners: Stresses in threaded	tasteners, effect of initial tens	sion, design of thi	readed fasteners under			
static, dynamic and impact loads, design c	f eccentrically loaded bolted j	oints.				

Power screws: Mechanics of power screw, stresses in power screws, efficiency and self-locking, design of power screws.

Assignment:

Course work includes a **Design project**. Design project should enable a group of students (maximum four in a group) to design a mechanical system (like couplings, screw jack, welded joints, bracket mounting using fasteners, etc.). Student should submit assembly drawing and part drawings, completely dimensioned, indicating the necessary manufacturing tolerances, surface finish symbols and geometric tolerances wherever necessary. Design project must be completed using appropriate solid modeling software. Computer generated drawings must be submitted. Design calculations must be hand written and should be included in the report. Design project should be given due credit in internal assessment.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Apply the concepts of selection of materials for given mechanical components.
- CO2: List the functions and uses of machine elements used in mechanical systems.
- CO3: Apply codes and standards in the design of machine elements and select an element based on the Manufacturer's catalogue.
- CO4: Analyse the performance and failure modes of mechanical components subjected to combined loading and fatigue loading using the concepts of theories of failure.
- CO5: Demonstrate the application of engineering design tools to the design of machine components like shafts, couplings, power screws, fasteners, welded and riveted joints.
- CO6: Understand the art of working in a team.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the	Edition and Year		
Textboo	Textbook/s					
1	Shigley's Mechanical Engineering Design	Richard G. Budynas, and J. Keith Nisbett	McGraw-Hill Education	10 th edition, 2015.		
2	Fundamentals of Machine Component Design	Juvinall R.C, and Marshek K.M.	John Wiley & Sons	Third Edition, 2007 student		
3	Design of Machine Elements,	V B Bhandari	Tata McGraw Hill	4th Ed., 2016.		
4	Design of Machine Elements-I	Dr.M H Annaiah Dr. J Suresh Kumar	New Age International (P)	1s Ed., 2016		
Referen	ce Books	-				
1	Machine Design- an integrated approach	Robert L. Norton	Pearson Education	2 nd edition.		
2	Design and Machine Elements	Spotts M.F., Shoup T.E	Pearson Education	8 th edition,2006		
3	Machine Component Design	Orthwein W	Jaico Publishing Co	2003		
4	Machine Design	Hall, Holowenko, Laughlin (Schaum's Outline series)	Tata McGraw Hill Publishing	Special Indian Edition, 2008		
5	Elements of Machine Design	H.G.Patil, S.C.Pilli, R.R.Malagi, M.S.Patil	IK International	First edition,2019		

6	Design of Machine	T. Krishna Rao	IK international	2012	
0	Elements Volume I		publishing house,		
7	Hand book of Mechanical	G. M. Maithra and L.V.Prasad	Tata McGraw Hill	2 nd edition, 2004.	
/	Design				
		·	·		
Design I	Data Hand Book:				
[1] Desi	[1] Design Data Hand Book, K. Lingaiah, McGraw Hill, 2 nd edition, 2003.				
[2] Design Data Hand Book, K. Mahadevan and Balaveera Reddy, CBS publication.					
[3] Design Data Hand Book, H.G.Patil, I. K. International Publisher, 2010					
[4] PSG Design Data Hand Book, PSG College of technology, Coimbatore					

B. E. MECHANICAL ENGINEERING					
Choice Based Credit	System (CBCS) and Outcome Based	Education (OBE)			
	SEMESTER - V				
	DYNAMICS OF MACHINES				
Course Code	18ME53	CIE Marks	40		
Teaching Hours/Week (L:T:P)	3:2:0	SEE Marks	60		
Credits	04	Exam Hours	03		
Course Learning Objectives:					
 To understand the force-motio 	n relationship in components subjec	ted to external for	rces and analysis		
of standard mechanisms.					
 To understand the undesirable 	effects of unbalances resulting from	prescribed motio	ns in mechanism.		
 To understand the effect of Dy 	namics of undesirable vibrations.				
 To understand the principles in 	mechanisms used for speed control	and stability cont	rol.		
 To know the concepts of mode 	lling mechanical systems using sprin	g, mass and damp	er elements.		
 To compute the natural and data 	mped frequencies of free 1-DOF me	chanical systems			
 To analyze the vibrational moti 	on of 1-DOF mechanical systems un	der harmonic excit	tation conditions.		
Module-1					
Static force analysis: Static equilibriu	m, analysis of four bar mechanisr	n, slider crank m	echanism, shaper		
mechanism. Dynamic force analysis: D	'Alembert's principle, analysis of fo	ur bar and slider of	crank mechanism,		
shaper mechanism.					
Module-2					
Balancing of Rotating Masses: Static	and Dynamic Balancing Balancing c	of single rotating r	nass by halancing		
masses in same plane and in differen	t planes. Balancing of several rotat	ing masses by ba	lancing masses in		
same plane and in different planes.					
Balancing of Reciprocating Masses:	Inertia Effect of crank and conne	ecting rod. Single	cvlinder Engine.		
Balancing in multi cylinder-inline engin	e (primary and secondary forces), V	-type engine, Radi	ial engine – direct		
and reverse crank method.			_		
Module-3					
Governors: Types of Governors; Force	Analysis of Porter and Hartnell Gov	vernors. Controllin	g Force, Stability,		
Sensitiveness, Isochronism, Effort and I	Power.				
Gyroscope: Vectorial representation of	of angular motion, Gyroscopic coup	ole. Effect of gyro	scopic Couple on		
plane disc, ship, aeroplane, Stability of	two wheelers and four wheelers.				
Module-4					
Free vibrations: Basic elements of	vibrating system, Types of free v	ibrations, Longitu	udinal vibrations-		
Equilibrium method, D'Alembert's pri	nciple, Energy method, Rayleigh's	method. Determi	nation of natural		
frequency of single degree freedom sy	stems, Effect of spring mass, Damp	ed free vibrations	s: Under damped,		
over damped and critically damped sys	tems. Logarithmic decrement.				
Module-5					
Forced vibrations: Undamped forced	vibration of spring mass system, I	Damped forced vil	orations, Rotating		
unbalance, Reciprocating unbalance,	Vibration isolation, Support moti	on(absolute and	relative motion),		
Transverse vibration of shaft with sing	le concentrated load, several loads,	, uniformly distrib	uted load, Critical		
speed.					
Course Outcomes: At the end of the co	urse, the student will be able to:				
CO1: Analyse the mechanisms for s	tatic and dynamic equilibrium.				
CO2: Carry out the balancing of rotating and reciprocating masses					
CO3: Analyse different types of governors used in real life situation.					
CO4: Analyse the gyroscopic effect	s on disks, airplanes, stability of ship	s, two and four w	heelers		
CO5: Understand the free and force	ed vibration phenomenon	,			
cost offactstand the free and ford					
COG: Dotorming the patural fragme	new force and motion transmitted in	wibrating systems	-		

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	k/s			
1	Theory of Machines: Kinematics and Dynamics	Sadhu Singh	Pearson	Third edition 2019.
2	Mechanism and Machine Theory	G. Ambekar	РНІ	2009
Reference	ce Books			
1	Theory of Machines	Rattan S.S.	Tata McGraw-Hill Publishing Company	2014
2	Mechanisms and Machines- Kinematics, Dynamics and Synthesis	Michael M Stanisic	Cengage Learning	2016

B. E. MECHANICAL ENGINEERING				
Choice Based Credit	System (CBCS) and Ou	tcome Based Education (OBE)		
	SEMESTER - V			
Course Code			40	
Teaching Hours (Week (I ·T·P)	3.0.0	SEE Marks	<u> </u>	
Credits	03	Exam Hours	03	
Course Learning Objectives:		Examinouis	0	
Understand typical design of T process involved.	urbo machine, their wo	king principle, application and t	hermodynamics	
Study the conversion of fluid e degree of reaction.	nergy to mechanical end	ergy in Turbo machine with utiliz	ation factor and	
 Analyse various designs of stea 	am turbine and their wo	rking principle.		
 Study the various designs of hy 	draulic turbine based o	n the working principle.		
Understand the various aspect	s in design of power abs	orbing machine.		
Module-1				
Introduction: Definition of turbo mac	hine, parts of turbo ma	achines, Comparison with positi	ive displacement	
machines, Classification, Dimensionles	s parameters and their	significance, Unit and specific c	juantities, model	
studies and its numerical.				
(Note: Since dimensional analysis is co	vered in Fluid Mechanic	s subject, questions on dimensio	onal analysis may	
not be given. However, dimensional pa	arameters and model stu	udies may be given more weight	age.)	
Efficiencies of turbo machines, Static a comparison) and polytropic efficience expansion process. Simple Numerical c Module-2	nd Stagnation states, or y for both compressio on stage efficiency and p	verall isentropic efficiency, stage n and expansion processes. R olytropic efficiency.	efficiency (their eheat factor for	
Energy exchange in Turbo machines	: Euler's turbine equati	on, Alternate form of Euler's t	urbine equation,	
Velocity triangles for different value	s of degree of reactio	n, Components of energy trai	nsfer, Degree of	
Reaction, utilization factor, Relation be	etween degree of reaction	on and Utilization factor, Probler	ns.	
General Analysis of Turbo machines: degree of reaction, velocity triangles reaction, Effect of blade discharge compressors, degree of reaction, veloc Module-3	Radial flow compresso s, Effect of blade disch angle on performance ity triangles. Numerical	rs and pumps – general analysi harge angle on energy transfe , , General analysis of axial f Problems.	s, Expression for r and degree of low pumps and	
Steam Turbines: Classification, Single	stage impulse turbine,	condition for maximum blade	efficiency, stage	
efficiency, Need and methods of c	ompounding, Multi-sta	ge impulse turbine, expressio	n for maximum	
utilization factor. Numerical Problems.				
Reaction turbine – Parsons's turbine.	condition for maximu	m utilization factor, reaction st	aging. Numerical	
Problems				
Module-4				
Hydraulic Turbines: Classification varie	ous efficiencies.			
Pelton Wheel – Principle of working v	elocity triangles, design	parameters, maximum efficienc	v. and numerical	
problems.			,,	
Francis turbine – Principle of working	velocity triangles desig	n parameters, and numerical pro	oblems	
Kaplan and Propeller turbines - Prin	ciple of working veloc	ity triangles design narameter	s and Numerical	
Problems. Theory and types of Draft tu	ibes.			

Module-5

Centrifugal Pumps: Classification and parts of centrifugal pump, different heads and efficiencies of centrifugal pump, Theoretical head – capacity relationship, Minimum speed for starting the flow, Maximum suction lift, Net positive suction head, Cavitation, Need for priming, Pumps in series and parallel. Problems.

Centrifugal Compressors: Stage velocity triangles, slip factor, power input factor, Stage work, Pressure developed, stage efficiency and surging and problems.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Model studies and thermodynamics analysis of turbomachines.

CO2: Analyse the energy transfer in Turbo machine with degree of reaction and utilisation factor.

CO3: Classify, analyse and understand various type of steam turbine.

CO4: Classify, analyse and understand various type of hydraulic turbine.

CO5: Understand the concept of radial power absorbing machine and the problems involved during its operation.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbook/s				
1	An Introduction to Energy Conversion, Volume III, Turbo machinery	V. Kadambi and Manohar Prasad	New Age International Publishers	reprint 2008
2	Turbo Machines	B.U.Pai	Wiley India Pvt, Ltd	1 st Edition
3	Turbo machines	M. S. Govindegowda and A. M. Nagaraj	M. M. Publications	7Th Ed, 2012
4	Fundamentals of Turbo Machinery	B.K Venkanna	PHI Publishers	
Referenc	e Books			
1	Turbines, Compressors & Fans	S. M. Yahya	Tata McGraw Hill Co. Ltd	2nd edition, 2002
2	Principals of Turbo machines	D. G. Shepherd	The Macmillan Company	1964
3	Fluid Mechanics & Thermodynamics of Turbo machines	S. L. Dixon	Elsevier	2005

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - V

FLUID POWER ENGINEERING

Course Code	18ME55	CIE Marks	40
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To provide an insight into the capabilities of hydraulic and pneumatic fluid power.
- To understand concepts and relationships surrounding force, pressure, energy and power in fluid power systems.
- To examine concepts cantering on sources of hydraulic power, rotary and linear actuators, distribution systems, hydraulic flow in pipes, and control components in fluid power systems.
- Exposure to build and interpret hydraulic and pneumatic circuits related to industrial applications.

• To familiarize with logic controls and trouble shooting.

Module-1

Introduction to fluid power systems

Fluid power system: components, advantages and applications. Transmission of power at static and dynamic states. Pascal's law and its applications.

Fluids for hydraulic system: types, properties, and selection. Additives, effect of temperature and pressure on hydraulic fluid. Seals, sealing materials, compatibility of seal with fluids. Types of pipes, hoses, and quick acting couplings. Pressure drop in hoses/pipes. Fluid conditioning through filters, strainers; sources of contamination and contamination control; heat exchangers.

Module-2

Pumps and actuators

Pumps: Classification of pumps, Pumping theory of positive displacement pumps, construction and working of Gear pumps, Vane pumps, Piston pumps, fixed and variable displacement pumps, Pump performance characteristics, pump selection factors, problems on pumps.

Accumulators: Types, and applications of accumulators. Types of Intensifiers, Pressure switches /sensor, Temperature switches/sensor, Level sensor.

Actuators: Classification cylinder and hydraulic motors, Hydraulic cylinders, single and double acting cylinder, mounting arrangements, cushioning, special types of cylinders, problems on cylinders.

Construction and working of rotary actuators such as gear, vane, piston motors, and Hydraulic Motor. Theoretical torque, power, flow rate, and hydraulic motor performance; numerical problems. Symbolic

Module-3

Components and hydraulic circuit design Components:

Classification of control valves, Directional Control Valves-symbolic representation, constructional features of poppet, sliding spool, rotary type valves solenoid and pilot operated DCV, shuttle valve, and check valves.

Pressure control valves - types, direct operated types and pilot operated types.

Flow Control Valves -compensated and non-compensated FCV, needle valve, temperature compensated, pressure compensated, pressure and temperature compensated FCV, symbolic representation.

Hydraulic Circuit Design: Control of single and Double -acting hydraulic cylinder, regenerative circuit, pump unloading circuit, counter balance valve application, hydraulic cylinder sequencing circuits, hydraulic circuit for force multiplication; speed control of hydraulic cylinder- metering in, metering out and bleed off circuits. Pilot pressure operated circuits.

Module-4

Pneumatic power systems

Introduction to Pneumatic systems: Pneumatic power system, advantages, limitations, applications, Choice of working medium. Characteristics of compressed air and air compressors. Structure of pneumatic control System, fluid conditioners-dryers and FRL unit.

Pneumatic Actuators: Linear cylinder – types of cylinders, working, end position cushioning, seals, mounting arrangements, and applications. Rotary cylinders- types, construction and application, symbols.

Pneumatic Control Valves: DCV such as poppet, spool, suspended seat type slide valve, pressure control valves, flow control valves, types and construction, use of memory valve, Quick exhaust valve, time delay valve, shuttle valve, twin pressure valve, symbols.

Module-5

Pneumatic control circuits

Simple Pneumatic Control: Direct and indirect actuation pneumatic cylinders, speed control of cylinders - supply air throttling and exhaust air throttling.

Signal Processing Elements: Use of Logic gates - OR and AND gates in pneumatic applications. Practical examples involving the use of logic gates.

Multi- Cylinder Application: Coordinated and sequential motion control, motion and control diagrams. Signal elimination methods, Cascading method- principle, Practical application examples (up to two cylinders) using cascading method (using reversing valves).

Electro- Pneumatic Control: Principles - signal input and output, pilot assisted solenoid control of directional control valves, use of relay and contactors. Control circuitry for simple signal cylinder application.

Learning Assignment:

The faculty will allocate one or more of the following experiments from group A and B to group of students (containing not more than four students in a group):

Group A: Experiments on hydraulic trainer:

- a. Speed control circuit using metering in and metering out technique
- b. Regenerative and sequencing circuits.
- c. Extend-Retract and Stop system of a linear actuator
 - d. Rapid Traverse and Feed circuit.
- Group B: Experiments on pneumatic trainer:
 - a. Automatic reciprocating circuit
 - b. Speed control circuit
 - c. Pneumatic circuit involving shuttle valve/ quick exhaust valve
 - d. Electro pneumatic valves and circuit

Students should build up the above circuits on computer using software and simulate the flow of fluid during the operation. Afterwards, they themselves can physically connect the circuit on the hydraulic/pneumatic trainer and run the circuit. Record of experiments shall be submitted in the form of journal. Due credit must be given for this assignment.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Identify and analyse the functional requirements of a fluid power transmission system for a given application.
- CO2: Visualize how a hydraulic/pneumatic circuit will work to accomplish the function.
- CO3: Design an appropriate hydraulic or pneumatic circuit or combination circuit like electro-hydraulics, electro- pneumatics for a given application.
- CO4: Select and size the different components of the circuit.
- CO5: Develop a comprehensive circuit diagram by integrating the components selected for the given application.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Fluid Power with applications	Anthony Esposito	Pearson edition	2000
2	Oil Hydraulics	Majumdar S.R	Tala McGRawHllL	2002
3	Pneumatic systems - Principles and Maintenance	Majumdar S.R	Tata McGraw-Hill	2005
Referen	ice Books			
1	Industrial Hydraulics	John Pippenger, Tyler Hicks	McGraw Hill International Edition	1980
2	Hydraulics and pneumatics	Andrew Par	Jaico Publishing House	2005
3	Fundamentals of Pneumatics, Vol I, II and III.	FESTO		
4	Hydraulic Control Systems	Herbert E. Merritt	John Wiley and Sons, Inc	
5	Introduction to Fluid power	Thomson	PrentcieHall	2004
6	Fundamentals of fluid power control	John Watton	Cambridge University press	2012

B. E. MECHANICAL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - V

OPERATIONS MANAGEMENT

Course Code	18ME56	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To get acquainted with the basic aspects of Production Management.
- The expose the students to various aspects of planning, organising and controlling operations Management.
- To understand different operational issues in manufacturing and services organisations.
- To understand different problem-solving methodologies and Production Management techniques.

Module-1

Introduction, Functions within business organizations, the operation management function, Classification of production systems, Productivity, factors affecting productivity.

Decision Making: The decision process, characteristics of operations decisions, use of models, decision making environments, graphical linear programming, analysis and trade-offs.

Module-2

Forecasting: Steps in forecasting process, approaches to forecasting, forecasts based on judgment and opinion, analysis of time series data, accuracy and control of forecasts, choosing a forecasting technique, elements of a good forecast.

Module-3

Capacity & Location Planning: Importance of capacity decisions, defining and measuring capacity, determinants of effective capacity, determining capacity requirement, developing capacity alternatives, evaluating alternatives, Need for location decisions, nature of locations decisions, general procedure for making locations decisions, evaluating locations decisions, facilities layout – need for layout decisions, types of processing.

Module-4

Aggregate Planning & Master Scheduling: Aggregate planning – Nature and scope of aggregate planning, strategies of aggregate planning, techniques for aggregate planning – graphical and charting techniques, mathematical techniques. The master production schedule, Master scheduling process, Master scheduling methods.

Module-5

Material Requirement Planning (MRP): Dependent versus independent demand, an overview of MRP – MRP inputs and outputs, MRP processing, ERP capacity requirement planning, benefits and limitations of MRP.

Purchasing and Supply Chain Management (SCM): Introduction, Importance of purchasing and SCM, the procur process, Concept of tenders, Approaches to SCM, Vendor development.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Explain the concept and scope of operations management in a business context

- CO2: Recognize the role of Operations management among various business functions and its role in the organizations' strategic planning and gaining competitive advantage.
- CO3: Analyze the appropriateness and applicability of a range of operations management systems/models in decision making.

CO4: Assess a range of strategies for improving the efficiency and effectiveness of organizational operations. CO5: Evaluate a selection of frameworks used in the design and delivery of operations

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.

- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

- 1. "Operation Management, Author- Joseph G Monks McGrew Hill Publication, International Edition-1987.
- 2. "Production and Operation Management", Author-Pannerselvam R. PHI publications, 2nd edition
- **3.** "An Introductory book on lean System, TPS Yasuhiro Modern.

Reference Books:

- **1.** "Production and Operation Management" Chary S. N. TataMcGrew Hill 3rd edition.
- 2. "Production and Operations Management", Everett E. Adams, Ronald J. Ebert, Prentice Hall of India Publications, Fourth Edition.
- 3. Modern Production/Operations Management, Buffia, Wiely India Ltd 4th Edition.

B. E. MECHANICAL ENGINEERING					
	Choice Based Credit	System (CBCS) and Outcome Bas	ed Education (OBE)		
		SEMESTER –V			
	FLU	ID MECHANICS AND MACHINES L	AB		
Course Co	de	18MEL57	CIE Marks	40	
Teaching H	lours/Week (L:T:P)	0:2:2	SEE Marks	60	
Credits		02	Exam Hours	03	
Course Le	arning Objectives:				
• Tł	nis course will provide a basi	c understanding of flow measuren	nents using various	types of flow	
m	easuring devices, calibratior	and losses associated with these	devices.		
• En	ergy conversion principles,	analysis and understanding of h	vdraulic turbines a	nd pumps will be	
dis	scussed. Application of the	se concepts for these machines	will be demonstra	ated. Performance	
an	alvsis will be carried out usin	og characteristic curves			
SL No.					
51. NO.		Experiments			
1	Lablavout calibration of :-	PARIA	cussed		
1	Lab layout, calibration of in	istruments and standards to be di	scussed		
2	Determination of coefficien	nt of friction of flow in a pipe.			
3	Determination of minor los	sses in flow through pipes.			
4	Application of momentum curved blades	equation for determination of co	efficient of impact	of jets on flat and	
5	Calibration of flow measur	ing devices.			
		PART B			
6	Performance on hydraulic	Turbines a. Pelton wheel b. Francis	5 Turbine c. Kaplan 1	Furbines	
7	Performance hydraulic Put	mps d. Single stage and Multi stag	ge centrifugal pump	os e. Reciprocating	
	pump.				
8	Performance test on a two	stage Reciprocating Air Compress	or.		
9	Performance test on an Air	Blower.			
		PART C (OPTION	AL)		
10	Visit to Hydraulic Power st	ation/ Municipal Water Pump Hou	use and Case Studies	S	
11	Demonstration of cut sect	ion models of Hydraulic turbines a	nd Pumps.		
Course Ou	tcomes: At the end of the co	ourse, the student will be able to:			
CO1: Perfo	orm experiments to determin	ne the coefficient of discharge of f	ow measuring device	ces.	
CO2: Cond	uct experiments on hydraul	c turbines and pumps to draw cha	racteristics.		
CO3: Test	basic performance paramete	ers of hydraulic turbines and pump	s and execute the k	nowledge in real	
lite s	situations.				
CO4: Determine the energy flow pattern through the hydraulic turbines and pumps.					
COS: Exhibit his competency towards preventive maintenance of hydraulic machines.					
Conduct of Practical Examination:					
1. All laboratory experiments are to be included for practical examination.					
2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners					
3 Students can nick one experiment from the questions lot prepared by the examiners					
4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zoro					
4. Change of experiment is anowed only once and 15% warks another to the procedure part to be made zero.					
ONE question from part A: 30 Marks					
	ONE question from part B: 50 Marks				
	Viva – Voice : 20 Marks				
Total : 100 Marks					

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)						
Course Co	ode	18MEL58	CIF Marks	40		
Teaching I	Hours/Week (L:T:P)	0:2:2	SEE Marks	60		
Credits		02	Exam Hours	03		
Course Le	earning Objectives:	I				
• T	his course will provide a	basic understanding of fu	el properties and its measuren	nents using various		
ty	ypes of measuring device	S				
• E	nergy conversion princip	les, analysis and understa	nding of I C Engines will be disc	cussed. Application		
0	of these concepts for thes	e machines will be demo	nstrated. Performance analysis	will be carried out		
u	ising characteristic curves			_		
• E>	rhaust emissions of I C En	gines will be measured ar	id compared with the standard	S.		
SI. No.		Expe	iments			
1		PA				
1	Lab layout, calibration (of Instruments and standa	ards to be discussed	nely, and Marton's		
2	(closed) / Cleveland's (n point and Fire point o Open Cup) Apparatus	i lubricating oli using Abel Pel	nský and iviarten s		
3	Determination of Calor	ific value of solid liquid a	nd gaseous fuels			
	Determination of Visco	sity of lubricating ail using	Podwoods Covholt and Torsia	n Viccomotors		
4 5	Valve Timing/port oper	sity of indificating of using	tine	in viscometers.		
5	5 valve Liming/port opening diagram of an I.C. Engine.					
6	Performance Tests on LC Engines Calculations of IP RP. Thermal efficiency. Volumetric efficiency					
	Mechanical efficiency	SEC EP A'E Ratio heat ba	lance sheet for	,,		
	a Fourst	roke Diesel Engine				
	h Fourst	roke Petrol Engine				
	c. Multi C	Winder Diesel/Potrol Engl	no (Morso tost)			
	d Two st	where Diesel/Fetroi Ling	ne, (Morse test)			
	u. Two sti					
7	Variable Compression F	Ratio I.C. Engine.	gino			
2	Measurements of Exha	ust Emissions of Diesel er	gine.			
0	Wedsurements of Exila					
9	Visit to Automobile Ind	ustrv/service stations.				
10	Demonstration of $p\theta$,	pV plots using Computeri	zed IC engine test rig			
Course O	utcomes: At the end of th	e course, the student wil	be able to:			
CO1:	Perform experiments to	determine the properties	of fuels and oils.			
CO2: Conduct experiments on engines and draw characteristics.						
CO3: Test basic performance parameters of I.C. Engine and implement the knowledge in industry.						
CO4: Identify exhaust emission, factors affecting them and exhibit his competency towards preventive						
maintenance of IC engines.						
Scheme o	of Examination:					
	ONE question from part A: 30 Marks					
	ONE question from part B: 50 Marks					
	Viva –V	oice : 20	Marks			
Total : 100 Marks						

B Choice Based Credit S	B. E. MECHANICAL ENGINEEING				
Choice Based Credit 5	SEMESTER _ V	Come based Education (OBE	1		
Course Code	1801/059	CIF Marks	40		
Teaching Hours / Week (I 'T'P)	(1:0:0)	SEE Marks	60		
Credits	01	Exam Hours	02		
Module - 1					
Ecosystems (Structure and Function): For Biodiversity: Types, Value; Hot-spots; Deforestation.	rest, Desert, Wetlands, ; Threats and Conse	Riverine, Oceanic and Lake. ervation of biodiversity, Fo	02 Hrs prest Wealth, and		
Module - 2					
Advances in Energy Systems (Merits, De	emerits, Global Status	and Applications): Hydroger	i, Solar, OTEC, Tidal		
and Wind. U2 Hrs	at and area studies). D	isastar Managamant Sustair	able Mining Cloud		
Solding and Carbon Trading	ot and case-studies): D	isaster Management, Sustair	hable Mining, Cloud		
Modulo 2					
Environmental Pollution (Sources Impo	cts Corrective and Pro	ventive measures Polovant I	Environmental Acto		
Case-studies): Surface and Ground Water Waste Management & Public Health As Industrial and Municipal Sludge.	r Pollution; Noise pollu spects: Bio-medical W	tion; Soil Pollution and Air Po astes; Solid waste; Hazardou	llution.02 Hrs s wastes; E-wastes;		
Module - 4					
Global Environmental Concerns (Conce	ept, policies and case	e-studies): Ground water de	pletion/recharging,		
Climate Change; Acid Rain; Ozone Deple	tion; Radon and Fluori	de problem in drinking wate	; Resettlement and		
rehabilitation of people, Environmental T	oxicology.				
Module - 5					
Latest Developments in Environmenta	al Pollution Mitigatio	n Tools (Concept and App	lications): G.I.S. &		
Remote Sensing, Environment Impac	ct Assessment, Envi	ronmental Management S	ystems, ISO14001;		
Environmental Stewardship- NGOS. 031	Hrs acine ering Leberstern	or Croop Duilding or Water	Treatment Diant ar		
Waste water treatment Plant: ought to h	a Followed by underst	or Green Building of Water	f document Plant Or		
Course Outcomes: At the end of the cour	rse students will be ab	le to.	r documentation.		
• CO1: Understand the principles of	of ecology and environ	mental issues that apply to ai	r land and water		
			r, lanu, anu water		
issues on a global scale,					
 CO2: Develop critical thinking and 	d/or observation skills,	and apply them to the ana	lysis of a problem		
or question related to the enviro	nment.				
CO3: Demonstrate ecology know	ledge of a complex rel	ationship between biotic and	abiotic		
components.					
CO4: Apply their ecological know	ledge to illustrate and	graph a problem and describ	e the realities that		
 CO4. Apply their ecological knowledge to indicitate and graph a problem and describe the realities that managors face when dealing with complex issues. 					
Question paper pattern:					
Ine Question paper will have 100 objective questions.					
Each question will be for 01 marks					
 Student will have to answer all the questions in an OMR Sheet. 					
• The Duration of Exam will be 2 hours.					
Sl. No. Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textbook/s					
1 Environmental Studies	Benny Joseph	Tata Mc Graw – Hill.	2 nd Edition, 2012		
		1	1		

2.	Environmental Studies	S M Prakash	Pristine Publishing House,	3 rd Edition [,] 2018
			Mangalore	
3	Environmental Studies –	R Rajagopalan	Oxford Publisher	2005
	From Crisis to Cure			
Referenc	e Books			
1	Principals of Environmental	Raman Sivakumar	Cengage learning,	2 nd Edition, 2005
	Science and Engineering		Singapur.	
2	Environmental Science – working with the Earth	G.Tyler Miller Jr.	Thomson Brooks /Cole,	11 th Edition, 2006
3	Text Book of Environmental	Pratiba Sing,	Acme Learning Pvt. Ltd.	1 st Edition
	and Ecology	AnoopSingh&	New Delhi.	
		Piyush Malaviya		

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VI					
	FINITE ELEMENT MET	HODS			
Course Code	18ME61	CIE Marks	40		
Teaching Hours /Week (L:T:P)3:2:0SEE Marks60					
Credits	04	Exam Hours	03		
Course Learning Objectives:					
To learn the basic principles of	finite element analysis p	rocedure			
• To understand the design and	neat transfer problems w	vith application of FEM.			
• Solve 1 D, 2 D and dynamic pro	oblems using Finite Elem	ent Analysis approach.			
 To learn the theory and charac 	teristics of finite elemen	ts that represent engineering s	tructures.		
To learn and apply finite eleme	nt solutions to structura	l, thermal, dynamic problem to	o develop the		
knowledge and skills needed to	effectively evaluate fini	te element analyses.			
Module-1					
Introduction to Finite Element Metho	d: General steps of the f	nite element method. Enginee	ering applications		
of finite element method. Advantages	of the Finite Element Me	thod.			
Boundary conditions: Homogeneous	and non-homogeneous	for structural, heat transfe	r and fluid flow		
problems. Potential energy method, R	ayleigh Ritz method, Gal	erkin's method, Displacement	method of finite		
element formulation. Convergence cri	teria, Discretisation proc	cess, Types of elements: 1D, 2	2D and 3D, Node		
numbering, Location of nodes. Strain	 displacement relations 	, Stress-strain relations, Plain	stress and Plain		
strain conditions, temperature effects.					
Interpolation models: Simplex, complex and multiplex elements, linear interpolation polynomials in terms of					
global coordinates 1D, 2D, 3D Simplex Elements.					
Module-2					
Introduction to the stiffness (Displacement) method: Introduction, Derivation of stiffness matrix, Derivation					
of stiffness matrix for a spring element	, Assembly the total stiff	ness matrix by superposition.	One-Dimensional		
Elements-Analysis of Bars and Trusses	, Linear interpolation po	lynomials in terms of local co	ordinate's for1D,		

2Delements. Higher order interpolation functions for 1D quadratic and cubic elements in natural coordinates, , , Constant strain triangle, Four-Nodded Tetrahedral Element (TET 4), Eight-Nodded Hexahedral Element (HEXA 3 8), 2D iso-parametric element, Lagrange interpolation functions.

Numerical integration: Gaussian quadrature one point, two point formulae, 2D integrals. Force terms: Body force, traction force and point loads, Numerical Problems: Solution for displacement, stress and strain in 1D

Module-3

Beams and Shafts: Boundary conditions, Load vector, Hermite shape functions, Beam stiffness matrix based on Euler-Bernoulli beam theory, Examples on cantilever beams, propped cantilever beams, Numerical problems on simply supported, fixed straight and stepped beams using direct stiffness method with concentrated and uniformly distributed load.

Torsion of Shafts: Finite element formulation of shafts, determination of stress and twists in circular shafts. Module-4

Heat Transfer: Basic equations of heat transfer: Energy balance equation, Rate equation: conduction, convection, radiation, 1D finite element formulation using vibration method, Problems with temperature gradient and heat fluxes, heat transfer in composite sections, straight fins.

Fluid Flow: Flow through a porous medium, Flow through pipes of uniform and stepped sections, Flow through hydraulic net works.

Module-5

Axi-symmetric Solid Elements: Derivation of stiffness matrix of axisymmetric bodies with triangular elements, Numerical solution of axisymmetric triangular element(s) subjected to surface forces, point loads, angular velocity, pressure vessels.

Dynamic Considerations: Formulation for point mass and distributed masses, Consistent element mass matrix of one dimensional bar element, truss element, axisymmetric triangular element, quadrilateral element, beam element. Lumped mass matrix of bar element, truss element, Evaluation of eigen values and eigen vectors, Applications to bars, stepped bars, and beams.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Identify the application and characteristics of FEA elements such as bars, beams, plane and isoparametric elements.
- CO2: Develop element characteristic equation and generation of global equation.
- CO3: Formulate and solve Axi-symmetric and heat transfer problems.
- CO4: Apply suitable boundary conditions to a global equation for bars, trusses, beams, circular shafts, heat transfer, fluid flow, axi-symmetric and dynamic problems

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textboo	k/s					
1	A first course in the Finite Element Method	Logan, D. L	Cengage Learning	6th Edition 2016		
2	Finite Element Method in Engineering	Rao, S. S	Pergaman Int. Library of Science	5th Edition 2010		
3	Finite Elements in Engineering	Chandrupatla T. R	PHI	2nd Edition 2013		
Referen	ce Books					
1	Finite Element Method	J.N.Reddy	McGraw -Hill International Edition			
2	Finite Elements Procedures	Bathe K. J	РНІ			
3	Concepts and Application of Finite Elements Analysis	Cook R. D., et al.	Wiley & Sons	4th Edition 2003		
E- L • V	 E- Learning VTU, E- learning 					

B. E. MECHANICAL ENGINEERING							
Choice Based C	Choice Based Credit System (CBCS) and Outcome Based Education (OBE)						
Course Code	Course Code 18ME62 CIE Marks 40						
Teaching Hours /Week (L:T:P)	3:2:0	SEE Marks	60				
Credits	04	Exam Hours	03				
Course Learning Objectives:							
To understand various ele	ements involved in a mecha	nical system.					
To analyze various force	s acting on the elements (of a mechanical system and de	sign them using				
annropriate techniques	odes and standards	si a meenamear system and ac					
To coloct transmission	olomonta liko goara holt	s nullous boorings from the	manufacturars'				
• To select transmission	elements like gears, beits	s, pulleys, bearings from the	manufacturers				
catalogue.							
 To design a mechanical sy 	stem integrating machine e	lements.					
 To produce assembly a 	nd working drawings of v	various mechanical systems in	volving machine				
elements like belts, pulley	/s, gears, springs, bearings, o	clutches and brakes.					
Module-1							
Springs: Types of springs, spring	materials, stresses in helic	al coil springs of circular and n	on-circular cross				
sections. Tension and compressio	n springs, concentric spring	s; springs under fluctuating load	s.				
Leaf Springs: Stresses in leaf sprin	gs, equalized stresses, and r	hipping of leaf springs.					
Introduction to torsion and Bellev	ville springs.						
Belts: Materials of construction	of flat and V belts, power i	ating of belts, concept of slip a	and creep, initial				
tension, effect of centrifugal tension	ion, maximum power condit	ion.	• •				
Selection of flat and V belts- le	ength & cross section fron	n manufacturers' catalogues. C	Construction and				
application of timing belts.							
Wire ropes: Construction of wire	ropes, stresses in wire rope	s, and selection of wire ropes.					
Module-2							
Gear drives: Classification of gear	rs, materials for gears, stan	dard systems of gear tooth, lub	rication of gears,				
and gear tooth failure modes.							
Spur Gears: Definitions, stresses	in gear tooth: Lewis equation	on and form factor, design for st	trength, dynamic				
load and wear.							
Helical Gears: Definitions, trans	verse and normal module,	formative number of teeth, of	design based on				
strength, dynamic load and wear.							
Module-3							
Bevel Gears: Definitions, formativ	e number of teeth, design t	based on strength, dynamic load	and wear.				
Worm Gears: Definitions, types of	of worm and worm gears, a	nd materials for worm and wor	m wheel. Design				
based on strength, dynamic, wear loads and efficiency of worm gear drives.							
Module-4							
Design of Clutches: Necessity	of a clutch in an automol	pile, types of clutch, friction n	naterials and its				
properties. Design of single plate, multi-plate and cone clutches based on uniform pressure and uniform wear							
theories.							
Design of Brakes: Different types of brakes, Concept of self-energizing and self-locking of brakes. Practical							
examples, Design of band brakes, block brakes and internal expanding brakes.							
Module-5							
Lubrication and Bearings: Lubrica	nts and their properties, be	aring materials and properties;	mechanisms of				
Iubrication, hydrodynamic lubrica	tion, pressure development	in oil film, bearing modulus, co	efficient of				
friction, minimum oil film thickne	ss, heat generated, and heat	t dissipated. Numerical example	s on				
hydrodynamic journal and thrust bearing design.							

Antifriction bearings: Types of rolling contact bearings and their applications, static and dynamic load carrying capacities, equivalent bearing load, load life relationship; selection of deep grove ball bearings from the manufacturers' catalogue; selection of bearings subjected to cyclic loads and speeds; probability of survival.

Assignment:

Course work includes a **Design project**. Design project should enable the students to design a mechanical system (like single stage reduction gear box with spur gears, single stage worm reduction gear box, V-belt and pulley drive system, machine tool spindle with bearing mounting, C-clamp, screw jack, etc.) A group of students (maximum number in a group should be 4) should submit assembly drawing and part drawings, completely dimensioned, indicating the necessary manufacturing tolerances, surface finish symbols and geometric tolerances wherever necessary. Design project must be completed using appropriate solid modeling software. Computer generated drawings must be submitted. Design calculations must be hand written and should be included in the report. Design project should be given due credit in internal assessment.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Apply design principles for the design of mechanical systems involving springs, belts, pulleys, and wire ropes.

- CO2: Design different types of gears and simple gear boxes for relevant applications.
- CO3: Understand the design principles of brakes and clutches.
- CO4: Apply design concepts of hydrodynamic bearings for different applications and select Anti friction bearings for different applications using the manufacturers, catalogue.
- CO6: Apply engineering design tools to product design.

CO7: Become good design engineers through learning the art of working in a team.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textboo	Textbook/s					
1	Shigley's Mechanical	Richard G. Budynas, and	McGraw-Hill	10 th Edition, 2015		
	Engineering Design	J. Keith Nisbett	Education			
2	Fundamentals of Machine Component Design	Juvinall R.C, and Marshek K.M	John Wiley & Sons	Third Edition 2007 Wiley student edition		
3	Design of Machine Elements	V. B. Bhandari	Tata Mcgraw Hill	4th Ed 2016.		
4	Design of Machine Elements-II	Dr.M H Annaiah Dr. J Suresh Kumar Dr.C N Chandrappa	New Age International (P) Ltd.,	1s Ed., 2016		
Reference Books						
1	Machine Design- an integrated approach	Robert L. Norton	Pearson Education	2 nd edition		
2	Design and Machine Elements	Spotts M.F., ShoupT.E	Pearson Education	8 th edition, 2006		

3	Machine design Hall, Holowenko, Laughlin (Schaum's Outline Series	adapted by S.K.Somani	Tata McGraw Hill Publishing Company Ltd	Special Indian Edition, 2008
4	Elements of Machine Design	H.G.Patil, S.C.Pilli, R.R.Malagi, M.S.Patil	IK International	First edition,2019
5	Design of Machine ElementsVolume II	T. Krishna Rao	IK international publishing house	2013
6	Hand book of Mechanical Design	G. M. Maithra and L.V.Prasad	Tata McGraw Hill	2 nd edition,2004
Design	Data Hand Books:		•	

[1] Design Data Hand Book, K.Lingaiah, McGraw Hill, 2nd edition, 2003.

[2] Design Data Hand Book, K.Mahadevan and Balaveera Reddy, CBS publication.

[3] Design Data Hand Book, H.G.Patil, I.K.International Publisher, 2010

[4] PSG Design Data Hand Book PSG College of technology Coimbatore

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VI

HEAT TRANSFER				
Course Code	18ME63	CIE Marks	40	
Teaching Hours /Week (L:T:P)	3:2:0	SEE Marks	60	
Credits	04	Exam Hours	03	

Course Learning Objectives:

- Study the modes of heat transfer.
- Learn how to formulate and solve 1-D steady and unsteady heat conduction problems.
- Apply empirical correlations for fully-developed laminar, turbulent internal flows and external boundary layer convective flow problems.
- Study the basic principles of heat exchanger analysis and thermal design.
- Understand the principles of boiling and condensation including radiation heat transfer related engineering problems.

Module-1

Introductory concepts and definitions: Modes of heat transfer: Basic laws governing conduction, convection, and radiation heat transfer; Types of boundary conditions. General three dimensional Heat Conduction Equation: Derivation of the equation in (i) Cartesian, coordinate only. Discussion of three dimensional Heat Conduction Equation in (ii) Polar and (iii) Spherical Co-ordinate Systems.

Steady-state one-dimensional heat conduction problems in Cartesian System: Steady-state one-dimensional heat conduction problems (i) without heat generation and (ii) constant thermal conductivity - in Cartesian system with various possible boundary conditions. Brief Introduction to variable thermal conductivity and heat generation [No numerical on variable thermal conductivity and heat generation] Thermal Resistances in Series and in Parallel. Critical Thickness of Insulation in cylinder and spheres Concept. Derivation

Module-2

Extended Surfaces or Fins: Classification, Straight Rectangular and Circular Fins, Temperature Distribution and Heat Transfer Calculations, Fin Efficiency and Effectiveness, Applications

Transient [Unsteady-state] heat conduction: Definition, Different cases - Negligible internal thermal resistance, negligible surface resistance, comparable internal thermal and surface resistance, Lumped body, Infinite Body and Semi-infinite Body, Numerical Problems, Heisler and Grober charts.

Module-3

Numerical Analysis of Heat Conduction: Introduction, one-dimensional steady conduction and one dimensional unsteady conduction, boundary conditions, solution methods.

Thermal Radiation: Fundamental principles - Gray, White, Opaque, Transparent and Black bodies, Spectral emissive power, Wien's displacement law, Planck's laws, Hemispherical Emissive Power, Stefan-Boltzmann law for the total emissive power of a black body, Emissivity and Kirchhoff's Laws, View factor, Net radiation exchange between parallel plates, concentric cylinders, and concentric spheres, Radiation Shield.

Module-4

Forced Convection: Boundary Layer Theory, Velocity and Thermal Boundary Layers, Prandtl number, Turbulent flow, Various empirical solutions, Forced convection flow over cylinders and spheres, Internal flows –laminar and turbulent flow solutions.

Free convection: Laminar and Turbulent flows, Vertical Plates, Vertical Tubes and Horizontal Tubes, Empirical solutions.

Module-5

Heat Exchangers: Definition, Classification, applications, LMTD method, Effectiveness - NTU method, Analytical Methods, Fouling Factors, Chart Solution Procedures for solving Heat Exchanger problems: Correction Factor Charts and Effectiveness-NTU Charts.

Introduction to boiling: pool boiling, Bubble Growth Mechanisms, Nucleate Pool Boiling, Critical Heat Flux in Nucleate Pool Boiling, Pool Film Boiling, Critical Heat Flux, Heat Transfer beyond the Critical Point, filmwise and dropwise Condensation.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Understand the modes of heat transfer and apply the basic laws to formulate engineering systems.
- CO2: Understand and apply the basic laws of heat transfer to extended surface, composite material and unsteady state heat transfer problems.
- CO3: Analyze heat conduction through numerical methods and apply the fundamental principle to solve radiation heat transfer problems.
- CO4: Analyze heat transfer due to free and forced convective heat transfer.
- CO5: Understand the design and performance analysis of heat exchangers and their practical applications, Condensation and Boiling phenomena.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textboo	Textbook/s					
1	Principals of heat transfer	Frank Kreith, Raj M. Manglik, Mark S. Bohn	Cengage learning	Seventh Edition 2011.		
2	Heat transfer, a practical approach	Yunus A. Cengel	Tata Mc Graw Hill	Fifth edition		
Referen	ice Books					
1	Heat and mass transfer	Kurt C, Rolle	Cengage learning	second edition		
2	Heat Transfer A Basic Approach	M. NecatiOzisik	McGraw Hill, New York	2005		
3	Fundamentals of Heat and Mass Transfer	Incropera, F. P. and De Witt, D. P	John Wiley and Sons, New York	5th Edition 2006		
4	Heat Transfer	Holman, J. P.	Tata McGraw Hill, New York	9th Edition 2008		

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VI Professional Elective-1 NON-TRADITIONAL MACHINING Course Code 18ME641 CIE Marks 40 Teaching Hours /Week (L:T:P) 3:0:0 SEE Marks 60 Course Learning Objectives: 0 To learn various concepts related to modern machining processes & their applications. To appreciate the differences between conventional and non-conventional machining processes. To appreciate the differences between conventional and non-conventional machining processes. To impart knowledge on various types of energy involved in non-traditional machining processes. To impart knowledge on various types of energy involved in non-traditional machining processes. Module-1 Introduction to Non-traditional machining, general classification Non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Imduction Bachining (JMM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abraive, work material, stand-off distance (SOD). Process characteristics: Material removal rate, a	B. E. MECHANICAL ENGINEERING					
SEMESTER – VI Professional Elective: 1 NON-TRADITIONAL MACHINING Course Code 18ME641 CIE Marks 60 Credits 03 SEE Marks 60 Course Learning Objectives: 03 Course in the influence on performance and their applications. To acquire a functional understanding of non-traditional manufacturing equipment. To know about various process parameters and their influence on performance and their applications. To impart knowledge on various types of energy involved in non-traditional machining processes. To know about various process parameters and their influence on performance and their applications. To impart knowledge on various types of energy involved in non-traditional machining processes. To know about various process parameters and their influence on performance and their additional anothining processes, Specific advantages, limitations and applications on non-traditional machining processes. Module-1 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Ultrasonic Machining (JJM): Introduction, Equipment and process of material removal, process variables:	Choice Based Credit	System (CBCS) and Outcome Base	d Education (OBE)			
Professional Elective 1 NON-TRADITIONAL MACHINING Course Code 18ME641 CIE Marks 40 Teaching Hours /Week (LT:P) 3:0:0 SEE Marks 60 Credits 03 Exam Hours 03 Course Learning Objectives: 03 Exam Hours 03 To learn various concepts related to modern machining processes & their applications. To acquire a functional understanding of non-traditional manufacturing equipment. To know about various process parameters and their influence on performance and their applications. To impart knowledge on various types of energy involved in non-traditional machining processes. Module-1 Introduction to Non-traditional machining, seeral classification Non-traditional machining processes, comparison between traditional and non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of apriluted and frequency. Effect of abury, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM. Abrasive Let Machining (JM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications et al. Advantages, limitations and app		SEMESTER – VI				
NON-TRADITIONAL MACHINING Course Code 18ME641 CIE Marks 40 Teaching Hours /Week (LT:P) 3:0:0 SEE Marks 60 Credits 03 Exam Hours 03 Course Learning Objectives: 0 10 Exam Hours 03 To appreciate the differences between conventional and non-conventional machining processes. To acquire a functional understanding of non-traditional machining equipment. To know about various process parameters and their influence on performance and their applications. To impart knowledge on various types of energy involved in non-traditional machining processes. Module-1 Introduction to Non-traditional machining, general classification Non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Module-3 Ultrasonic Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material removal rate, tool wear, accuracy, surface finish, applications, ECM tooling technique & example, Tool feed rate, Gap between tool & work pisece, veloloty of electrolyte flow, type of electrolyte, its conc		Professional Elective- 1				
Course Code 18ME641 CIE Marks 40 Teaching Hours /Week (LT:P) 3:0:0 SEE Marks 60 Credits 03 Exam Hours 03 Course Learning Objectives: 03 Exam Hours 03 To learn various concepts related to modern machining processes & their applications. To appreciate the differences between conventional and non-conventional machining processes. To appreciate the differences between conventional and non-conventional machining processes. To appreciate the differences between conventional manufacturing equipment. To know about various process parameters and their influence on performance and their applications. To impart knowledge on various types of energy involved in non-traditional machining processes. Module-1 Introduction to Non-traditional machining, general classification Non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency. Effect of abrasive grain diameter, effect of slurry, tool & work material. Module-3 Ultrasonic Machining (JM): Introduction, Equipment and process of material removal, process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages a limitations of USM. Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduc		NON-TRADITIONAL MACHINING				
Teaching Hours /Week (LT:P) 3:0:0 SEE Marks 60 Credits 03 Exam Hours 03 Course Learning Objectives: • To learn various concepts related to modern machining processes & their applications. • To acquire a functional understanding of non-traditional manufacturing equipment. • • To acquire a functional understanding of non-traditional manufacturing equipment. • • To know about various process parameters and their influence on performance and their applications. • • To impart knowledge on various types of energy involved in non-traditional machining processes. Module-1 Introduction to Non-traditional machining, Need for Non-traditional machining processes, classification based on nature of energy employed in machining, selection of non-traditional machining processes, specific advantages, limitations and applications of non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency. Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM. Abrasive Jet Machining (JMM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive Remote finish, advantages of using for starteristics: Material removal rate, accuracy, surface finish, col & work material removal rate, Gap	Course Code	18ME641	CIE Marks	40		
Credits 03 Exam Hours 03 Course Learning Objectives: To learn various concepts related to modern machining processes & their applications. To appreciate the differences between conventional and non-conventional machining processes. To acquire a functional understanding of non-traditional manufacturing equipment. To know about various process parameters and their influence on performance and their applications. To impart knowledge on various types of energy involved in non-traditional machining processes. Module-1 Introduction to Non-traditional machining, general classification Non-traditional machining processes, classification based on nature of energy employed in machining, selection of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process of flect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM. Abrasive Jet Machining (AIM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics:-Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool Feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling	Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60		
 Course Learning Objectives: To learn various concepts related to modern machining processes & their applications. To appreciate the differences between conventional and non-conventional machining processes. To acquire a functional understanding of non-traditional manufacturing equipment. To know about various process parameters and their influence on performance and their applications. To impart knowledge on various types of energy involved in non-traditional machining processes. Module-1 Introduction to Non-traditional machining, Need for Non-traditional machining process, Comparison between traditional and non-traditional machining general classification Non-traditional machining processes, classification based on nature of energy employed in machining, selection of non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM. Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material removal rate, course, surface finish, applications, ECM equipment, elements of ECM objeration, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish, Process characteristics and process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Aevantages, disadvantages and application of ECG, ECH. CHEMICAL M	Credits	03	Exam Hours	03		
 To learn various concepts related to modern machining processes & their applications. To acquire a functional understanding of non-traditional manufacturing equipment. To know about various process parameters and their influence on performance and their applications. To impart knowledge on various types of energy involved in non-traditional machining processes. Module-1 Introduction to Non-traditional machining, Need for Non-traditional machining processes, Comparison between traditional on on-traditional machining genergy employed in machining, selection of non-traditional machining processes, Cassification based on nature of energy employed in machining, selection of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM. Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of ECK tool process. CHM pieces: CEM Tooling: ECM tooling technique example, Tool & insulation	Course Learning Objectives:					
 To appreciate the differences between conventional and non-conventional machining processes. To acquire a functional understanding of non-traditional manufacturing equipment. To know about various process parameters and their influence on performance and their applications. To impart knowledge on various types of energy involved in non-traditional machining processes. Module-1 Introduction to Non-traditional machining, general classification Non-traditional machining processes, classification based on nature of energy employed in machining, selection of non-traditional machining processes, specific advantages, limitations and applications of non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte, itow, type of electrolyte, itow, type of electrolyte, itow, and applications ECM: electrolyte itow, type of electrolyte, itow, supe of chemical machining process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process. chemical binking process. Advantages, disadvantages and application of ECG, ECH.	To learn various concepts rela	ted to modern machining processes	s & their applicatio	ns.		
 To acquire a functional understanding of non-traditional manufacturing equipment. To know about various process parameters and their influence on performance and their applications. To impart knowledge on various types of energy involved in non-traditional machining processes. Module-1 Introduction to Non-traditional machining, Need for Non-traditional machining process, Comparison between traditional and non-traditional machining, general classification Non-traditional machining processes, classification based on nature of energy employed in machining, selection of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM. Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Resists (maskants), Etchants. Applications ECM: Electrochemical grinding and electrochemical honing process. Process characteristics of CHM: material removal rate, accuracy, surfac	To appreciate the differences	between conventional and non-cor	ventional machinii	ng processes.		
 To know about various process parameters and their influence on performance and their applications. To impart knowledge on various types of energy involved in non-traditional machining processes. Module-1 Introduction to Non-traditional machining, Need for Non-traditional machining process, Comparison between traditional and non-traditional machining, general classification Non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process	To acquire a functional unders	tanding of non-traditional manufac	cturing equipment.			
 applications. To impart knowledge on various types of energy involved in non-traditional machining processes. Module-1 Introduction to Non-traditional machining, Need for Non-traditional machining process, Comparison between traditional and non-traditional machining, general classification Non-traditional machining processes, classification based on nature of energy employed in machining, selection of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material renoval rate, tool wear, accuracy, surface finish, applications, advantages & Imitations of USM. Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of Electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mecha	 To know about various pr 	ocess parameters and their infl	uence on perform	mance and their		
 To impart knowledge on various types of energy involved in non-traditional machining processes. Module-1 Introduction to Non-traditional machining, Need for Non-traditional machining process, Comparison between traditional and non-traditional machining, general classification Non-traditional machining processes, classification based on nature of energy employed in machining, selection of non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM. Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulations and applications of chemical machining process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process. Chemical blanking process, chemical milling process. Proces characteristics of CHM: material removal rate, accuracy, surface finish, advant	applications.					
Module-1 Introduction to Non-traditional machining, Need for Non-traditional machining processs, Comparison between traditional and non-traditional machining, general classification Non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM. Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material removal rate, accuracy, surface finish, applications, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of Electrochemical grinding and electrochemical honing process. Process. Process characteristics of CHM: Electricate institution of ECM; ECM Forcess. Process characteristics of CHM: Electrochemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of ECM; ECM Forcess characteristics of CHM: Electrochemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. <td< td=""><td> To impart knowledge on vario </td><td>us types of energy involved in non-</td><td>traditional machini</td><td>ng processes.</td></td<>	 To impart knowledge on vario 	us types of energy involved in non-	traditional machini	ng processes.		
Introduction to Non-traditional machining, Need for Non-traditional machining process, Comparison between traditional and non-traditional machining, general classification Non-traditional machining processes, classification based on nature of energy employed in machining, selection of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM. Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Process characteristics of CHM: material removal application of the process, chemical machining process. Module-4 ELECTRICAL MACHINING (EMM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process. Chemical machining process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Boat certifica electrolyte, its concentration temperature, and choi	Module-1					
traditional and non-traditional machining, general classification Non-traditional machining processes, classification based on nature of energy employed in machining, selection of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM. Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process-chemical blanking process, chemical milling process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, elec	Introduction to Non-traditional machi	ning, Need for Non-traditional mac	hining process, Cor	nparison between		
classification based on nature of energy employed in machining, selection of non-traditional machining processes. Specific advantages, limitations and applications of non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM. Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, ide flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wi	traditional and non-traditional mad	hining, general classification No	n-traditional mac	hining processes,		
processes, Specific advantages, limitations and applications of non-traditional machining processes. Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM. Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (EAM): Introduction, non-thermal generation of plasma, equipmen	classification based on nature of er	ergy employed in machining, sele	ection of non-trad	litional machining		
 Module-2 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM. Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spa	processes, Specific advantages, limitat	ions and applications of non-traditi	onal machining pro	ocesses.		
 Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM. Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of CHM: PLASMA ARC MACHINING (PAM): Introduction, no-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety	Module-2					
Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM. Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process-chemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equi	Ultrasonic Machining (USM): Introdu	ction, Equipment and material pro	ocess, Effect of pro	ocess parameters:		
Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM. Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process-chemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions	Effect of amplitude and frequency, Effect	fect of abrasive grain diameter, ef	fect of slurry, tool	& work material.		
 limitations of USM. Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety 	Process characteristics: Material remo	val rate, tool wear, accuracy, surfa	ce finish, applicatio	ons, advantages &		
Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process-chemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety	limitations of USM.	· · · ·	<i>i</i> i i	, U		
carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process-chemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety	Abrasive Jet Machining (AJM): Introd	uction, Equipment and process of	material removal,	process variables:		
 Module-3 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process-chemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety 	carrier gas, type of abrasive, work	material, stand-off distance (SO	D). Process chara	cteristics-Material		
ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process-chemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety	Rendula 2	autor finish Applications of on	to and O limitations	<u> </u>		
 ELECTROCHEMICAL MACHINING (ECM): Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process-chemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety 		(NA), Introduction Drinciple of	alantra ahamiaal	machining FCN4		
 rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process-chemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety 	ELECTROCHEMICAL MACHINING (E	an Chamistry of ECM ECM Proc	electro chemical	Material removal		
 Process parameters. Current density, foor feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process-chemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety 	rate accuracy surface finish Process	on, chemistry of Ecivi. Ecivi Proce	food rate. Can bet			
 piece, velocity of electrolyte how, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process-chemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety 	nieco volocity of clostrolyto flow	tune of electrolyte its concent	reeu rate, Gap bet	ween tool & work		
 Electrolytes. ECM robiling. ECM tooling technique & example, robit & insulation materials. Applications ECM. Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process-chemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety 	piece, velocity of electrolyte now,	a tashnigua & ayamnla Taal & ins	ulation materials	Applications ECM		
 Electrochemical grinning and electrochemical noning process. Advantages, disadvantages and application of ECG, ECH. CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process-chemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety 	Electrophemical grinding and electrophemical	g technique & example, Tool & Ins	ulation materials.	Applications ECIVI:		
 CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process-chemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety 		nemical noning process. Advantag	es, uisauvaillages o			
 CHEMICAL MACHINING (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process-chemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety 	CHEMICAL MACHINING (CHM), Elow	onte of the process. Resists (mas	kante) Etchante 1	Types of chamical		
 matchining process-chemical blanking process, chemical mining process. Process characteristics of chinical matchining process. material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety 	machining process chemical blanking	process, chemical milling process	Rants), Lichants. I	toristics of CHM.		
 Module-4 ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety 	material removal rate accuracy of	rface finish advantages limitat	ions and applicat	ions of chomical		
Module-4ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM.PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety	machining process	arrace minish, advantages, minitat	ions and applicat			
ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety	Module-A					
spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety	ELECTRICAL DISCHARGE MACHINING (EDM): Introduction, mechanism of metal removal EDM equipments					
feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety	snark erosion generator (relavation t	ELECTRICAL DISCHARGE MACHINING (EDIVI): Introduction, mechanism of metal removal, EDM equipment:				
process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety	feed control system Flushing types: pressure flushing suction flushing side flushing nulsed flushing FDM					
limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety	nrocess narameters: Snark frequency current & snark gan surface finish Heat Affected Zone Advantages					
PLASMA ARC MACHINING (PAM): Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety	limitations & applications of EDM. Elec	process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages,				
metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety		roduction non-thermal generation	of plasma oquinm	ent mechanism of		
metar removal, riasma toren, process parameters, process characteristics. Salety precautions. Salety	metal removal Plasma tarch proc	ess parameters process charact	or plasma, equipm			
precautions applications advantages and limitations	precautions applications advantages	and limitations	ensults. Salety pr	ecautions. Salely		
Modulo E						

LASER	LASER BEAM MACHINING (LBM): Introduction, generation of LASER, Equipment and mechanism of metal						
ELECTR	FIECTRON BEAM MACHINING (FBM): Introduction, Principle, equipment and mechanism of metal removal						
applicat	tions, advantages and limitation	ons.					
Course	Outcomes: At the end of the c	ourse, the student will be	able to:				
CO1: Ur	nderstand the compare tradition	onal and non-traditional n	nachining process and reco	gnize the need for			
No	n- traditional machining proce	ess.					
CO2: Ur	nderstand the constructional fe	eatures, performance para	ameters, process character	istics, applications,			
adv	vantages and limitations of US	M, AJM and WJM.					
CO3: Ide	entify the need of Chemical an	d electro-chemical machi	ning process along with the	constructional			
fea	itures, process parameters, pro	ocess characteristics, app	lications, advantages and lin	mitations.			
CO4: Ur	nderstand the constructional fe	eature of the equipment,	process parameters, proces	ss characteristics,			
ар	plications, advantages and limit	itations EDM & PAM.					
CO5: Ur	nderstand the LBM equipment	, LBM parameters, and ch	aracteristics. EBM equipme	ent and mechanism			
of	metal removal, applications, a	dvantages and limitations	LBM & EBM.				
Questio	n paper pattern:						
• Tł	ne question paper will have ter	n full questions carrying e	qual marks.				
• Ea	ach full question will be for 20	marks.					
• Tł	nere will be two full questions	(with a maximum of four	sub- questions) from each i	module.			
• Ea	ach full question will have sub-	question covering all the	topics under a module.				
• Tł	ne students will have to answe	r five full questions, selec	ting one full question from	each module.			
SI No	Title of the Book	Name of the Author/s	Name of the Publishe	Edition and Year			
Textboo	ok/s						
1	Modern Machining Process	by P.C Pandey and H S	McGraw Hill Education	2000			
	Shah India Pvt. Ltd.						
2	2 Production technology HMT McGraw Hill Education 2001						
Referen	Peference Books						
1	New Technology	Dr. Amitabha	The Institute of	2000			
		Bhattacharyya	Engineers (India)				
2	Modern Machining process	Aditya		2002			

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VI				
	Professional Elective- 1			
REFI	RIGERATION AND AIR CONDITIONI	NG		
Course Code	18ME642	CIE Marks	40	
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Study the basic definition, ASHRAE Nomenclature for refrigerating systems.
- Understand the working principles and applications of different types of refrigeration systems.
- Study the working of air conditioning systems and their applications.
- Identify the performance parameters and their relations of an air conditioning system.

Module-1

Introduction to Refrigeration –Basic Definitions, ASHRAE Nomenclature, Air Refrigeration Cycles-reversed Carnot cycle, Bell-Coleman cycle analysis, Air Refrigeration systems-merits and demerits and applications: Aircraft refrigeration cycles, Joule Thompson coefficient and Inversion Temperature, Linde, Claude and Stirling cycles for liquefaction of air.

Industrial Refrigeration-Chemical and process industries, Dairy plants , Petroleum refineries, Food processing and food chain, Miscellaneous

Module-2

Vapour Compression Refrigeration System(VCRS): Comparison of Vapour Compression Cycle and Gas cycle, Vapour Compression Refrigeration system Working and analysis, Limitations, Superheat horn and throttling loss for various refrigerants, efficiency, Modifications to standard cycle – liquid-suction heat exchangers, Grindlay cycle and Lorenz cycle, Optimum suction condition for optimum COP Actual cycles with pressure drops, Complete Vapour Compression Refrigeration System, Multi-Pressure, Multi-evaporator systems or Compound Vapour Compression Refrigeration Systems – Methods like Flash Gas removal, Flash inter cooling and water Inter cooling.

Module-3

Vapour Absorption Refrigeration Systems: Absorbent – Refrigerant combinations, Water-Ammonia Systems, Practical problems, Lithium- Bromide System, Contrast between the two systems, Modified Version of Aqua-Ammonia System with Rectifier and Analyzer Assembly.Practical problems – crystallization and air leakage, Commercial systems

Other types of Refrigeration systems: Brief Discussion on (i) Steam-Jet refrigeration system and (ii) Thermoelectric refrigeration, pulse tube refrigeration, thermoacoustic refrigeration systems

Module-4

Refrigerants: Primary and secondary refrigerants, Designation of Refrigerants, Desirable properties of refrigerants including solubility in water and lubricating oil, material compatibility, toxicity, flammability, leak detection, cost, environment and performance issues Thermodynamic properties of refrigerants, Synthetic and natural refrigerants, Comparison between different refrigerants vis a vis applications, Special issues and practical implications Refrigerant mixtures – zeotropic and azeotropic mixtures

Refrigeration systems Equipment: Compressors, Condensers, Expansion Devices and Evaporators, A brief look at other components of the system.

Module-5

Air-Conditioning: Introduction to Air-Conditioning, Basic Definition, Classification, power rating, Mathematical Analysis of Air-Conditioning Loads, Related Aspects, Different Air-Conditioning Systems-Central – Station Air-Conditioning System, Unitary Air-Conditioning System, Window Air-Conditioner and Packaged Air-Conditioner, Components related to Air-Conditioning Systems.

Transport air conditioning Systems: Air conditioning systems for automobiles (cars, buses etc.), Air conditioning systems for trains, Air conditioning systems for ships

Course Outcomes: At the end of the course, the student will be able to:

CO1: Illustrate the principles, nomenclature and applications of refrigeration systems.

CO2: Explain vapour compression refrigeration system and identify methods for performance improvement

CO3: Study the working principles of air, vapour absorption, thermoelectric and steam-jet and thermoacoustic refrigeration systems.

CO4: Estimate the performance of air-conditioning systems using the principles of psychrometry.

CO5: Compute and Interpret cooling and heating loads in an air-conditioning system.

CO6: Identify suitable refrigerant for various refrigerating systems.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Refrigeration and Air-	Arora C.P	Tata Mc Graw –Hill,	2 nd Edition, 2001
	conditioning		New Delhi	
2	Principles of Refrigeration	Roy J. Dossat	Wiley Limited	
3	Refrigeration and Air-	Stoecker W.F., and	Mc Graw - Hill, New	2nd edition,
	conditioning	Jones J.W.,	Delhi	1982.
Referen	ce Books			
1	Heating, Ventilation and Air	McQuistion	Wiley Students	5 th edition2000.
	Conditioning		edition	
2	Air conditioning	ΡΙΤΑ	Pearson	4th edition 2005
3	Refrigeration and Air-	S C Arora& S	Dhanpat Rai	
	Conditioning	Domkundwar	Publication	
4	Principles of Refrigeration	Dossat	Pearson	2006
5	Refrigeration and Air-	Manohar prasad		
	Conditioning			
6	Handbook of Air Conditioning	Shan K. Wang	McGraw-Hill	2/e,2001
	and Refrigeration		Education	

Data Book:

1. Mathur M.L. & Mehta, Refrigerant and Psychrometric Properties (Tables & Charts) SI Units, F.S., Jain Brothers, 2008

E- Learning

<u>http://nptel.ac.in/courses/112105128/#</u>

E-Resources

• VTU, E- learning, MOOCS, Open courseware

B. E. MECHANICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER – VI
Professional Elective- 1
THEORY OF ELASTICITY

Course Code	18ME643	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To provide the student with the mathematical and physical principles of Theory of Elasticity.
- To provide the student with various solution strategies while applying them to practical cases.

Module-1

Analysis of Stress: Definition and notation of stress, Equations of equilibrium in differential form, Stress components on an arbitrary plane, Equality of cross shear, Stress invariants, Principal stresses, Octahedral stress, Planes of maximum shear, Stress transformation, Plane state of stress, Mohr's diagram for 3dimensional state of stress.

Module-2

Analysis of Strain: Displacement field, Strains in term of displacement field, Infinitesimal strain at a point, Engineering shear strains, Strain invariants, Principal strains, Octahedral strains, Plane state of strain, Compatibility equations, Strain transformation. Principle of super position, Saint Venant principle.

Module-3

Two-Dimensional classical elasticity: Cartesian co-ordinates, Relation between plane stress and plane strain, stress functions for plane stress and plane strain state, Airy's stress functions, investigation of Airy's stress function for simple beams. Bending of a narrow cantilever beam of rectangular cross section under edge load. Bending of simply supported beam under UDL, stress concentration, stress distribution in an infinite plate with a circular hole subjected to uniaxial and biaxial loads.

General equations in polar coordinates, stress distribution symmetrical about an axis, Thick wall cylinder subjected to internal and external pressures.

Module-4

Stress analysis in Axisymmetric body: Stresses in rotating discs of uniform thickness and cylinders. Numerical Problems.

Torsion: Torsion of circular, elliptical and triangular bars, Prandtl's membrane analogy, Torsion of thin walled thin tubes, Torsion of thin walled multiple cell closed sections.

Module-5

Thermal stress: Thermo elastic stress strain relations, equations of equilibrium, thermal stresses in thin circular discs and in long circular cylinders.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Understand the Basic field equations of linear elastic solids, force, stress, strain and equilibrium in solids. CO2: Analyse the 2D structural elements, beams, cylinders.

CO3: Use analytical techniques to predict deformation, internal force and failure of simple solids and structural

components.

CO4: Analyse the axisymmetric structural elements.

CO5: Analyse the structural members subjected to torsion

CO6: Determine the thermal stresses in plain stress and plane stain conditions.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	k/s			
1	Theory of Elasticity	S. P. Timoshenko and J. N Gordier	Mc-Graw Hill International	3rd edition, 2010
2	Advanced Mechanics of solids	L. S. Srinath	Tata Mc. Graw Hill	2009
Referen	ce Books			
1	Theory of Elasticity	Sadhu Singh	Khanna Publications	2004
2	Applied Elasticity	T.G. Seetharamuand Govindaraju	Interline Publishing	2008.

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VI					
	Professional Elective- 1				
VIBRATIONS AND NOISE ENGINEERING					
Course Code	Course Code 18ME644 CIE Marks 40				
eaching Hours /Week (L:T:P) 3:0:0 SEE Marks 60					
edits 03 Exam Hours 03					
Course Learning Objectives:	ourse Learning Objectives:				

Со

- To enable the students to understand the theoretical principles of vibration and vibration analysis techniques for the practical solution of vibration problems.
- To enable the students to understand the importance of vibrations in mechanical design of machine parts subject to vibrations
- To make free and forced (harmonic, periodic, non-periodic) vibration analysis of single and multidegree of freedom linear systems.
- Be able to write the differential equation of motion of vibratory systems.

Module-1

Forced vibrations (1DOF): Introduction, analysis of forced vibration with constant harmonic excitation, MF, rotating and reciprocating unbalances, excitation of support (Relative and absolute amplitudes), force and motion transmissibility, energy dissipated due to damping and numerical problems.

Systems with 2DOF: Principal modes of vibrations, normal mode and natural frequencies of systems (Damping is not included), simple spring-mass systems, masses on tightly stretched strings, double pendulum, tensional systems, combined rectilinear and angular systems, geared systems and numerical problems.

Module-2

Numerical methods for multi DOF systems: Maxwell's reciprocal theorem, influence coefficients, Rayleigh's method, Dunkerley's method, stodola method, orthogonality principle, method of matrix iteration and numerical.

Modal analysis and condition monitoring: signal analysis, dynamic testing of machines and structures, Module-3

Vibration measuring instruments and whirling of shafts: seismic instruments, vibrometers, accelerometer, frequency measuring instruments and numerical. Whirling of shafts with and without damping.

Vibration Control: Introduction, Vibration isolation theory, Vibration isolation and motion isolation for harmonic excitation, practical aspects of vibration analysis, vibration isolation, Dynamic vibration absorbers and Vibration dampers.

Module-4

Transient Vibration of single Degree-of freedom systems: Impulse excitation, arbitrary excitation, Laplace transforms formulation, Pulse excitation and rise time, Shock response spectrum, Shock isolation.

Noise Engineering: Subjective response of sound: Frequency and sound dependent human response; the decibel scale; relationship between, sound pressure level(SPL), sound power level and sound intensity scale; relationship between addition, subtraction and averaging, sound spectra and Octave band analysis ; loudness; weighting networks; equivalent sound level, auditory effects of noise; hazardous noise, exposure due to machines and equipment; hearing conservation and damage risk criteria, daily noise doze.

Module-5

Noise: Sources, Isolation and control: Major sources of noise on road and in industries, noise due to construction equipment and domestic appliances, industrial noise control, strategies-noise control at source (with or without sound enclosures), noise control along the path (with or without partitions and acoustic barriers); noise control at the receiver, ear defenders, earplugs, semi-insert protectors.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Characterize the single and multi-degrees of freedom systems subjected to free and forced vibrations with

and without damping.

- CO2: Apply the method of vibration measurements and its controlling.
- CO3: Determine vibratory responses of SDOF and MDOF systems to harmonic, periodic and non-periodic excitation.

CO4: Analyze the mathematical model of a linear vibratory system to determine its response.

CO5: Obtain linear mathematical models of reallife engineering systems.

CO6: Apply the principles of vibration and noise reduction techniques to real life engineering problems.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.

• The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s		·	·
1	Mechanical Vibrations	S. S. Rao	Pearson Education	
2	Fundamentals of Mechanical Vibration	S. Graham Kelly	McGraw-Hill	
3	Mechanical Vibrations	W.T. Thomson	Prentice Hill India	
4	Vibraitons and Acoustics – Measurements and signal	C Sujatha	Tata McGraw Hill	
Referen	ce Books			
1	Mechanical Vibrations	G. K. Grover	Nem Chand and Bros.	
2	Theory of Vibration with Application	William T. Thomson, Marie Dillon Dahleh, Chandramouli	Pearson Education	5th edition
3	Mechanical Vibrations	V. P. Singh	Dhanpat Rai & Company	
4	Mechanical Vibrations and Noise engineering	Amberkar A.G.	PHI	
E- Learn • VTU, E	i ng - learning	·		

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VI Professional Elective- 1

COMPOSITE MATERIALS TECHNOLOGY

Course Code	18ME645	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To know the behaviour of constituents in the composite materials
- To Enlighten the students in different types of reinforcement
- To Enlighten the students in different types of matrices
- To develop the student's skills in understanding the different manufacturing methods available for composite material.
- To understand the various characterization techniques
- To illuminate the knowledge and analysis skills in applying basic laws in mechanics to the composite materials.

Module-1

Introduction to Composite Materials: Definition, classification & brief history of composite materials. **Constituent of composite materials:** Reinforcements, Matrix, Coupling agents, coatings & fillers.

Reinforcements: Introduction, Glass Fibers, Boron Fibers, Carbon Fibers, Organic Fibers, Ceramic Fibers, Whiskers, Other Non-oxide Reinforcements, Comparison of Fibers

Matrix Materials: Polymers, Metals and Ceramic Matrix Materials.

Interfaces: Wettability, Crystallographic nature of interface, types of bonding at the interface and optimum interfacial bond strength.

Module-2

Polymer Matrix Composites (PMC): Processing of PMC's; Processing of Thermoset Matrix Composites, Thermoplastic Matrix Composites, Sheet Moulding Compound and carbon reinforced polymer composites. Interfaces in PMC's, Structure & Properties of PMC's, applications

Metal Matrix Composites: Types of metal matrix composites, Important Metallic Matrices, Processing, Interfaces in Metal Matrix Composites, Properties & Applications.

Module-3

Ceramic Matrix Composites (CMC): Processing of CMC's; Cold Pressing & Sintering, Hot Pressing, Reaction Bonding Processes, Infiltration, Directed Oxidation, In Situ Chemical Reaction Technique, Sol-Gel, Polymer Infiltration & Pyrolysis, Electrophoretic Deposition, Self-Propagating High Temperature Synthesis. Interfaces, properties and applications of CMC's.

Carbon Fiber/Carbon Matrix Composites: Processing of Carbon/Carbon Composites, Oxidation protection of Carbon/Carbon Composites, Properties of Carbon/Carbon Composites, and application of Carbon/Carbon Composites.

Multi-filamentary Superconducting Composites: The Problem of Flux Pinning, Types of Super Conductor, Processing & structure of Multi filamentary superconducting composites. Applications of multi-filamentary superconducting composites.

Module-4

Nonconventional Composites: Introduction, Nanocomposites; Polymer clay nanocomposites, self healing composites, self-reinforced composites. Biocomposites, Laminates; Ceramic Laminates, Hybrid Composites. Performance/Characterization of Composites: Static Mechanical Properties; Tensile Properties, Compressive Properties, Flexural Properties, In-Plane Shear Properties, Interlaminar Shear Strength. Fatigue Properties; Tension–Tension Fatigue, Flexural Fatigue. Impact Properties; Charpy, Izod, and Drop-Weight Impact Test.

Module-5

Micromechanics of Composites: Density, Mechanical Properties; Prediction of Elastic Constants, Micromechanical Approaches, Halpin-Tsai Equations, Transverse Stresses, Thermal properties. Numerical Problems.

Macromechanics of Composites: Introduction, Elastic constants of an isotropic material, elastic constants of a lamina, relationship between engineering constants and reduced stiffnesses and compliances.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Use different types of manufacturing processes in the preparation of composite materials

CO2: Analyze the problems on macro mechanical 88ehavior of composites

CO3: Analyze the problems on micromechanical 88ehavior of Composites

CO4: Determine stresses and strains relation in composites materials.

CO5: Understand and effective use of properties in design of composite structures

CO6: Perform literature search on a selected advanced material topic.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s		·	
1	Composite Material Science and Engineering	Krishan K. Chawla	Springer	Third Edition First Indian Reprint 2015
2	Fibre-Reinforced Composites, Materials, Manufacturing, and Design	P.K. Mallick	CRC Press, Taylor & Francis Group	Third Edition
3	Mechanics of Composite Materials & Structures	MadhijitMukhopadhay	Universities Press	2004
Referen	ce Books		·	
1	Mechanics of Composite materials	Autar K. Kaw	CRC Taylor & Francis	2nd Ed, 2005
2	Stress analysis of fiber Reinforced Composites Materials	Michael W, Hyer	Mc-Graw Hill International	2009
3	Mechanics of Composite Materials	.Robert M. Jones	Taylor & Francis	1999
E- Learn • VTU, E	ing - learning			

B. E. MECHANICAL ENGINEERING					
Choice Based Credit Syste	Choice Based Credit System (CBCS) and Outcome Based Education (OBE)				
SEMESTEK – VI Drofossional Flactiva, 1					
ENTREP	RENEURSHIP DEVELOPMEN	т			
Course Code	18ME646	CIE Marks	40		
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60		
Credits	03	Exam Hours	03		
Credits03Exam Hours03Course Learning Objectives:• To enable the students to understand the concept of Entrepreneur and Entrepreneurship and relevant roles• To enable the students to learn creativity and entrepreneurial plan including Project Feasibility and Project Appraisal• To enable the students to understand Corporate entrepreneurship and issues related to Corporate entrepreneurship• To enable the students to understand Corporate entrepreneurship and issues related to 					
and Career Opportunities)	Module-2				
Creativity and Entropropourial Di	n. The husiness plan as on a	ntronronourial tool	Contanta		
of a business plan, Idea Generation, S Feasibility Analysis: Economic, Marke Monitoring and Control segmentati Synectics, Value Analysis, Innovation	Screening and Project Identifi eting, Financial and Technical; on. Creative Problem Solvin Project Feasibility and Project	cation, Creative Per Project Planning: E g: Heuristics, Brair ct Appraisal.	formance, valuation, storming,		
	Module-3				
Corporate entrepreneurship: Introduction, Flavors of corporate entrepreneurship, Corporate venturing, Intrapreneurship, organizational transformation, Industry rule bending, Need for corporate entrepreneurship, domain of corporate entrepreneurship, conditions favorable for Corporate entrepreneurship, benefits of Corporate entrepreneurship, issues related to Corporate entrepreneurship.					
	Module-4				
Family and Non Family Entrepreneur & Women entrepreneurs: Role of Professionals, Professionalism vs family entrepreneurs, Role of Woman entrepreneur, , Factors influencing women entrepreneur, Challenges for women entrepreneurs, Growth and development of women entrepreneurs in India					
Module-5					
International Entrepreneurship entrepreneurship, Importance of i domestics' entrepreneurship, Stages ventures: Supporting Organizations; scale Industries, Govt. Policies for SSI	Opportunities : The nternational business to the of economic development. I Incentives and facilities; Fin s. Case studies on Indian Start	nature of int e firm, Internation Institutional suppor ancial Institutions tups	ernational Ial versus It for new and Small		

Course outcomes:

At the end of the course the student will be able to:

- 1. understand the concept of Entrepreneur and Entrepreneurship and relevant roles
- 2. learn creativity and entrepreneurial plan including Project Feasibility and Project Appraisal
- 3. understand Corporate entrepreneurship and issues related to Corporate entrepreneurship
- 4. understand Family and Non Family Entrepreneur & Women entrepreneurs and women entrepreneurs in India
- 5. understand International Entrepreneurship Opportunities and Case studies on Indian Start ups

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.

• Each full question will have sub- question covering all the topics under a module. • The students will have to answer five full questions, selecting one full question from each module.

Text Books

S1.	Title of the Book	Name of the	Name of the Publisher	Edition
No		Author/s		and Year
01	Dynamics of Entrepreneurship	Vasant Desai	Himalaya Publication	2011
	Development		house	
02	Entrepreneurship, New Venture	David Holt	Prentice Hall India	1991
	Creation			
03	Entrepreneurial Development	S.S. Khanka	S.Chand& Company	2013
			Ltd. New Delhi	
04	Innovation and Entrepreneurship	Peter F. Drucker	Butterworth-	2006
	· · ·		Heinemann	

Reference Books

S1.	Title of the Book	Name of the	Name of the	Edition and
No		Author/s	Publisher	Year
01	Entreprenuership – Theory, Process	Donald F Kuratko	Cengage Learning	9th Edition,
	and Practice			2014
02	"Entrepreneurship	Rajeev Roy	Oxford University	2nd Edition,
			Press	2011
03	"Enterprenuership theory at cross	Mathew J	Dream tech,	2 Edition
	roads: paradigms and praxis	Manimala		2005
04	Entrepreneurship	Hisrich R D, Peters	Tata McGraw-Hill	8th Edition
		M P		2013.

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER –VI					
	NON CONVENTIONAL ENE	RGY SOURCES			
Course Code	18ME651	CIE Marks	40		
Teaching Hours/Week (L:T:P) 3:0:0 SEE Marks 60					
Credits 03 Exam Hours 03					
Course Learning Objectives:					

- To introduce the concepts of solar energy, its radiation, collection, storage and application.
- To introduce the concepts and applications of Wind energy, Biomass energy, Geothermal energy and ٠ Ocean energy as alternative energy sources.
- To explore society's present needs and future energy demands.
- To examine energy sources and systems, including fossil fuels and nuclear energy, and then focus on alternate, renewable energy sources such as solar, biomass (conversions), wind power, geothermal, etc.
- To get exposed to energy conservation methods.

Module-1

Introduction: Energy source, India's production and reserves of commercial energy sources, need for nonconventional energy sources, energy alternatives, solar, thermal, photovoltaic. Water power, wind biomass, ocean temperature difference, tidal and waves, geothermal, tar sands and oil shale, nuclear (Brief descriptions); advantages and disadvantages, comparison (Qualitative and Quantitative).

Solar Radiation: Extra-Terrestrial radiation, spectral distribution of extra terrestrial radiation, solar constant, solar radiation at the earth's surface, beam, diffuse and global radiation, solar radiation data.

Measurement of Solar Radiation: Pyrometer, shading ring pyrheliometer, sunshine recorder, schematic diagrams and principle of working.

Module-2

Solar Radiation Geometry: Flux on a plane surface, latitude, declination angle, surface azimuth angle, hour angle, zenith angle, solar altitude angle expression for the angle between the incident beam and the normal to a plane surface (No derivation) local apparent time. Apparent motion of sum, day length, numerical examples.

Radiation Flux on a Tilted Surface: Beam, diffuse and reflected radiation, expression for flux on a tilted surface (no derivations) numerical examples.

Solar Thermal Conversion: Collection and storage, thermal collection devices, liquid flat plate collectors, solar air heaters concentrating collectors (cylindrical, parabolic, paraboloid) (Quantitative analysis); sensible heat storage, latent heat storage, application of solar energy water heating. Space heating and cooling, active and nassive systems nower generation refrigeration. Distillation (Qualitative analysis) solar nond principle of Module-3

Performance Analysis of Liquid Flat Plate Collectors: General description, collector geometry, selective surface (qualitative discussion) basic energy-balance equation, stagnation temperature, transmissivity of the cover system, transmissivity – absorptivity product, numerical examples. The overall loss coefficient, correlation for the top loss coefficient, bottom and side loss coefficient, problems (all correlations to be provided). Temperature distribution between the collector tubes, collector heat removal factor, collector efficiency factor and collector flow factor, mean plate temperature, instantaneous efficiency (all expressions to be provided). Effect of various parameters on the collector performance; collector orientation, selective surface, fluid inlet temperature, number covers, dust.

Photovoltaic Conversion: Description, principle of working and characteristics, application.

Module-4

Wind Energy : Properties of wind, availability of wind energy in India, wind velocity and power from wind; major problems associated with wind power, wind machines; Types of wind machines and their characteristics, horizontal and vertical axis wind mills, elementary design principles; coefficient of performance of a wind mill rotor, aerodynamic considerations of wind mill design, numerical examples.

Tidal Power: Tides and waves as energy suppliers and their mechanics; fundamental characteristics of tidal power, harnessing tidal energy, limitations.

Ocean Thermal Energy Conversion: Principle of working, Rankine cycle, OTEC power stations in the world, problems associated with OTEC.

Module-5

Geothermal Energy Conversion: Principle of working, types of geothermal station with schematic diagram, geothermal plants in the world, problems associated with geothermal conversion, scope of geothermal energy.

Energy from Bio Mass: Photosynthesis, photosynthetic oxygen production, energy plantation, bio gas production from organic wastes by anaerobic fermentation, description of bio-gas plants, transportation of bio-gas, problems involved with bio-gas production, application of bio-gas, application of bio-gas in engines, advantages.

Hydrogen Energy: Properties of Hydrogen with respected to its utilization as a renewable form of energy, sources of hydrogen, production of hydrogen, electrolysis of water, thermal decomposition of water, thermo chemical production bio-chemical production.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Describe the environmental aspects of non-conventional energy resources. In Comparison with various conventional energy systems, their prospects and limitations.
- CO2: Know the need of renewable energy resources, historical and latest developments.
- CO3: Describe the use of solar energy and the various components used in the energy production with respect to applications like-heating, cooling, desalination, power generation, drying, cooking etc.
- CO4: Appreciate the need of Wind Energy and the various components used in energy generation and know the classifications.
- CO5: Understand the concept of Biomass energy resources and their classification, types of biogas Plantsapplications
- CO6: Compare Solar, Wind and bio energy systems, their prospects, Advantages and limitations.
- CO7: Acquire the knowledge of fuel cells, wave power, tidal power and geothermal principles and applications.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s	-		
1	Non-Convention Energy Resources	B H Khan	McGraw Hill Education (India) Pvt. Ltd.	3 rd Edition
2	Solar energy	Subhas P Sukhatme	Tata McGraw Hill	2 nd Edition, 1996.
3	Non-Conventional Energy Sources	G.D Rai	Khanna Publishers	2003
Referen	ce Books			
1	Renewable Energy Sources and Conversion Technology	N.K.Bansal, Manfred Kleeman&MechaelMeliss	Tata McGraw Hill.	2004
2	Renewable Energy Technologies	Ramesh R & Kumar K U	Narosa Publishing House New Delhi	
3	Conventional Energy Systems	K M, Non	Wheeler Publishing Co. Ltd., New Delhi	2003

4	Non-Conventional Energy	Ashok V Desai	Wiley Eastern Ltd, New	2003
			Deini	

B. E. MECHANICAL ENGINEERING					
Choice Based Credit	System (CBCS) and Outcome Base	d Education (OBE)			
	SEMESTER –VI				
	OPEN ELECTIVE A				
\\	WORLD CLASS MANUFACTURING				
Course Code	18ME652	CIE Marks	40		
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60		
Credits	03	Exam Hours	03		
• To understand the concent	of world class manufacturing du	namics of materia	I flow and Lean		
manufacturing	or world class manufacturing, dy	names of materia	in now, and lean		
To familiarize the students with	the concepts of Rusiness exceller	co and compotitive	noss		
• To familiarize the students with th	i the concepts of Busiless excellent		iness.		
• To apprise the students with tr	le need to meet the current and ful	ure business challe	enges.		
Io prepare the students to unc	lerstand the current global manufa	cturing scenario.			
Module-1	E collection of all the second		2		
Historical Perspective World class	Excellent organizations – Mode	els for manufact	uring excellence:		
Module-2	nodels, Business Excellence.				
Nodule-2		Dettile seed as diffe			
Benchmark, Bottlenecks and Best Pra	ctices, Concepts of benchmarking,	Bottleneck and be	est practices, Best		
Value Stream mapping Eliminating w	se through world class manufactur	ing – value addec	manufacturing –		
value Stream mapping – Eliminating w	aste – Toyota Production System –E	xampie.			
Module-3	. factoria a laterativa Duado et 8	Ducasa Dasian			
System and Tools for World Class Mail	Autacturing. Improving Product &	Process Design – I	Lean Production –		
SQC, FIVIS, Rapid Prototyping, Poka f	OKE, 5-5,3 IVI, JIT, Product IVIX,	Optimizing , Proci	arement & stores		
Module-4					
Human Besource Management in V	/CM: Adding value to the organ	nization– Organiza	tional learning –		
techniques of removing Root cause of	f problems–People as problem sol	vers–New organiza	ational structures.		
Associates–Facilitators– Teamsmanshi	– Motivation and reward in the age	e of continuous imp	provement.		
Module-5					
Typical Characteristics of WCM Compa	nies Performance indicators like PC	P, TOPP and AMB	ITE systems- what		
is world class Performance –Six Sigma	philosophy.				
Indian Scenario on world class manufa	cturing –Task Ahead. Green Manuf	acturing, Clean ma	nufacturing, Agile		
manufacturing.					
Course Outcomes: At the end of the co	ourse, the student will be able to:				
CO1: Understand recent trends in r	nanufacturing.				
CO2: Demonstrate the relevance a	nd basics of World Class Manufactu	ring.			
CO3: Understand customization of	product for manufacturing.				
CO4: Understand the implementat	CO4: Understand the implementation of new technologies.				
CO5: Compare the existing industries with WCM industries.					
Question paper pattern:					
The question paper will have ten full questions carrying equal marks.					
• Each full question will be for 20 r	narks.				
• There will be two full questions (with a maximum of four sub- quest	ions) from each mo	odule.		
• Each full guestion will have sub-	uestion covering all the topics unc	ler a module.			
 The students will have to answer five full questions, selecting one full question from each module 					

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	World Class Manufacturing-	Sahay B.S.,	Mac Milan Publications	New Delhi
	Strategic Perspective	Saxena KBC. and		
		Ashish Kumar		
2	Just In Time Manufacturing	Korgaonkar M.G	MacMilan Publications	
Referen	nce Books			
1	Production and Operational	Adam and Ebert	Prentice Hall learning Pvt.	5th Edition
	Management		Ltd.	
2	The Toyota Way – 14 Management	Jeffrey K.Liker	Mc-Graw Hill	2003
	Principles			
3	Operations Management for	Chase Richard B.,	McGraw Hill Publications	11th Edition
	Competitive Advantage	Jacob Robert		2005
4	Making Common Sense Common	Moore Ron	Butterworth-Heinemann	2002
	Practice			
5	World Class Manufacturing- The	Schonberger R. J	Free Press	1986
	Lesson of Simplicity			

B. E. MECHANICAL ENGINEERING				
Choice Based Cr	edit System (CBCS) and Out	come Based Education (OB	BE)	
SEMESTER –VI				
Course Code			40	
Teaching Hours (Week (L.T.P)	3.0.0	CIE IVIdI KS SEE Marks	40	
Credits	03	Exam Hours	03	
Course Learning Objectives:	00	- Examinouis	00	
• To acquaint with key drive	rs of supply chain performa	nce and their inter-relations	ching with stratogy	
• To acquaint with key drive	rahlam asking skills passes		r a variatu of averalu	
To impart analytical and p	robiem-solving skills necess	ary to develop solutions to	a variety of supply	
chain management & desig	gn problems.			
 To study the complexity o 	f inter-firm and intra-firm o	coordination in implementing	ng programs such as	
e-collaboration, quick resp	onse, jointly managed inver	ntories and strategic alliance	es.	
Module-1				
Introduction: Supply Chain – Fund	amentals – Evolution- Role	in Economy - Importance	- Decision Phases -	
Supplier Manufacturer-Customer	chain Enablers/ Drivers	of Supply Chain Perform	nance. Supply chain	
strategy - Supply Chain Performance	ce Measures.			
Module-2				
Strategic Sourcing Outsourcing – I	Make Vs buy - Identifying c	ore processes - Market Vs	Hierarchy - Make Vs	
buy continuum -Sourcing strategy	 Supplier Selection and Cor 	tract Negotiation. Creating	a world class supply	
base- Supplier Development - Wor	ld Wide Sourcing.			
Module-3				
Warehouse Management Stores	management-stores system	is and procedures-incomin	g materials control-	
stores accounting and stock ver	ification Obsolete, surplu	and scrap-value analysis	s-material handling-	
transportation and traffic manage	ement -operational efficien	cy-productivity-cost effecti	veness-performance	
medsurement. Supply Chain Notwork Distribution	n Notwork Dosign Polo	Eactors Influencing Ontion	na Valua Addition	
Distribution Strategies - Models f	or Eacility Location and Ca	Pactors Innuencing Option	ion Center Location	
Models				
Module-4				
Supply Chain Network optimization	on models. Impact of unce	ertainty on Network Desig	n - Network Design	
decisions using Decision trees. Pla	inning Demand, -multiple i	tem -multiple location inve	ntory management.	
Pricing and Revenue Management			, 0	
Module-5				
Current Trends: Supply Chain Ir	ntegration - Building part	nership and trust in Sup	ply chain Value of	
Information: Bullwhip Effect - I	Effective forecasting - Co	ordinating the supply cha	ain. Supply Chain	
restructuring, Supply Chain Ma	pping - Supply Chain pr	ocess restructuring, Post	pone the point of	
differentiation – IT in Supply Chain	- Agile Supply Chains - Reve	rse Supply chain. Future of	IT in supply chain- E-	
Business in supply chain.				
Course Outcomes: At the end of th	e course the student will be	e able to:		
CO1: Understand the framewo	rk and scope of supply chai	n management.		
CO2: Build and manage a comp	petitive supply chain using s	trategies, models, techniqu	es and information	
technology.				
CO3: Plan the demand, invento	ory and supply and optimize	supply chain network.		
CO4: Understand the emerging	trends and impact of IT on	Supply chain.		
Question paper pattern:				
• The question paper will have	ten full questions carrying	equal marks.		
• Each full question will be for	20 marks.			
There will be two full question	ons (with a maximum of fou	r sub- questions) from each	module	

- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textb	ook/s			
1	Supply Chain Management– Text and Cases	Janat Shah	Pearson Education	2009
2	Supply Chain Management- Strategy Planning and Operation	Sunil Chopra and Peter Meindl	PHI Learning / Pearson Education	2007
Refer	ence Books			
1	Business Logistics and Supply Chain Management	Ballou Ronald H	Pearson Education	5th Edition, 2007
2	Designing and Managing the Supply Chain: Concepts, Strategies, and Cases	David Simchi-Levi, Philip Kaminsky, Edith Simchi-Levi	Tata McGraw-Hill	2005
3	Supply Chain Management- Concept and Cases	Altekar Rahul V	PHI	2005
4	Modeling the Supply Chain	Shapiro Jeremy F	Thomson Learning	Second Reprint , 2002
5	Principles of Supply Chain Management- A Balanced Approach	Joel D. Wisner, G. Keong Leong, Keah- Choon Tan	South-Western, Cengage Learning	2008

	B. E. MECHANICAL ENGIN	EERING			
Choice Based Credit	System (CBCS) and Outco	me Based Education (OBE)			
	SEMESTER –VI				
OPEN FLECTIVE A					
ADVANCED MATERIALS TECHNOLOGY					
Course Code	18MF654	CIE Marks	40		
Teaching Hours/Week (I ·T·P)	3.0.0	SFE Marks	60		
Credits	03	Exam Hours	03		
Course Learning Objectives:	00		00		
To impart knowledge on mater	ial selection methods and	basics of advanced engineer	ing materials.		
 To introduce the basics of small 	rt materials, composite ma	terials ceramics and glasses	and modern		
motallic materials and their and	alications in onginooring				
	Silications in engineering.				
Module-1					
Classification and Selection of Mate	rials: Classification of m	aterials, properties require	d in Engineering		
materials, Selection of Materials; Moti	vation for selection, cost	basis and service requirement	nts - Selection for		
mechanical properties, strength, tough	iness, fatigue and creep -	Selection for surface durabl	lity corrosion and		
wear resistance – Relationship betw	een materials selection	and processing - Case stu	dies in materials		
Selection with relevance to aero, auto,	marine, machinery and hu	iclear applications.			
Module-2					
Composite Materials: Fiber reinforced,	laminated and dispersed	materials with metallic mat	rix of aluminium,		
copper and Titanium alloys and wit	h non-metallic matrix of	unsaturated polyesters a	nd epoxy resins.		
Development, Important properties an	d applications of these ma	terials.			
Module-3					
Ceramics and Glasses - Bio-ceramics:	Nearly inert ceramics, bio	p-reactive glasses and glass	ceramics, porous		
ceramics; Calcium phosphate ceramic	s: grafts, coatings Physic	o-chemical surface modifica	ition of materials		
used in medicine.					
Low & High Temperature Materials: Pr	operties required for low	temperature applications, N	laterials available		
for low temperature applications, Re	quirements of materials	for high temperature applic	ations, Materials		
available for high temperature applicat	ions, Applications of low a	nd nigh temperature materi	als.		
Module-4	La Miana allavad Iliah Chu		I. The note and a time		
induced plasticity (TDID) Steel Margin	is, Micro alloyed, High Str	ength Low alloy (HSLA) Stee	i, Transformation		
Non motollic Materials, Polymoria mat	g Steer, inter metallics, Ni	and IT Aluminides.	niques for Fibers		
Non-metallic Materials. Polymeric mat	ura Dranartias and Applies	structures, Production Tech	riques for Fibers,		
Madula E	are, Properties and Applica	itions of Engineering Polyme	15.		
Smart Materiale: Shane Memory Alley	Varistors and Intelligent	matorials for his modical an	nlications		
Nanomaterials: Definition Types of na	nomatorials including carl	naterials for bio-medical ap	plications. nnosites Physical		
and mechanical properties. Application	nomaterials including can	son nanotubes and nanotor	nposites, Enysical		
Course Outcomes: At the end of the co	and mechanical properties, Applications of nanomaterials.				
CO1: Explain the concents and prin	cinles of advanced materia	als and manufacturing proce	2022		
CO2: Understand the applications	of all kinds of Industrial ma	itoriale			
	CO2: Understand the applications of all kinds of industrial materials.				
CO3: Apply the material selection of	oncepts to select a materi	ai for a given application.			
CO4: Define Nanotechnology, Desc	ribe nano material charac	terization.			
CO5: Understand the behaviour an	d applications of smart ma	iterials, ceramics, glasses and	d non-metallic		
materials.					

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Referen	ce Books			
1	Engineering Material Technology	James A. Jacobs & Thomas F. Kilduff	Prentice Hall	
2	Materials Science and Engineering	WD. Callister Jr.	Wiley India Pvt. Ltd	2010
3	Engineering Design: A Materials and Processing Approach	G.E. Dieter	McGraw Hill	1991
4	Materials Selection in Mechanical Design	M.F. Ashby	Pergamon Press	1992
5	Introduction to Engineering Materials & Manufacturing Processes	NIIT	Prentice Hall of India	
6	Engineering Materials Properties and Selection	Kenneth G. Budinski	Prentice Hall of India	
7	Selection of Engineering Materials	Gladius Lewis	Prentice-Hall, New Jersey	

	B. E. MECHANICAL ENGINEERING				
		Choice Based Credit	System (CBCS) and Outco	ome Based Education (OBE)	
		COMPUT	FR AIDED MODELLING AN	ID ANALYSIS LAB	
Cour	se Code		18MEL66	CIE Marks	40
Teac	hing Ho	urs /Week (L:T:P)	0:2:2	SEE Marks	60
Cred	its		02	Exam Hours	03
Cour	se Lear	ning Objectives:			
·	 To a 	cquire basic understandin	g of Modeling and Analys	is software	
·	• Tou	inderstand the concepts o	f different kinds of loadin	g on bars, trusses and beams	, and analyze the
	resu	Its pertaining to various p	arameters like stresses ar	d deformations.	
•	• To le	ean to apply the basic prir	ciples to carry out dynam	ic analysis to know the natur	al frequencies of
	diffe	erent kind of beams.			
SI.			Experiment	5	
No.					
1	Study	of a EFA nackage and mo	PART A deling and stress analysis	of	
1	Study	Bars of constant cross se	action area tanered cross	cection area and stenned har	
	a. b	Trusses – (Minimum 2 e	versises of different type		
		Beams – Simply support	ted cantilever beams wi	s) th noint load LIDL beams v	with varving load
		etc. (Minimum 6 exercis	ses)		
	d.	Stress analysis of a recta	ngular plate with a circula	ar hole.	
	1	•	PART B		
2	Therm	al Analysis – 1D & 2D pro	blem with conduction an	d convection boundary condi	tions (Minimum
	4 exer	cises of different types)			
3	Dynam	nic Analysis to find:			
		a) Natural frequency of be	eam with fixed – fixed end	l condition	•
		 c) Response of beam with 	tixed – fixed end conditions	ons subjected to forcing funct	ion
			PART Clonky for dom		
4					
4	a.	Demonstrate the use of to solver.	graphics standards (IGES	, STEP etc) to import the moc	iel from modeler
	b.	Demonstrate one exam analysis.	ple of contact analysis	to learn the procedure to c	arry out contact
	C.	Demonstrate at least tw from composite materia	o different types of exam I.	ple to model and analyze bar	s or plates made
Cour	se Outc	omes: At the end of the co	ourse, the student will be	able to:	
CO1:	Use the	e modern tools to formulat	te the problem, create ge	ometry, descritize, apply bour	ndary conditions
to					
	solve p	roblems of bars, truss, bea	ams, and plate to find stre	sses with different-loading co	onditions.
CO2:	Demon	strate the ability to obtain	deflection of beams subj	ected to point, uniformly dist	ributed and
	varying loads and use the available results to draw shear force and bending moment diagrams.				
CO3:	Analyze conditio	e and solve 1D and 2D hea ons.	t transfer conduction and	convection problems with dif	ferent boundary
CO4	: Carry c	out dynamic analysis and fi	nding natural frequencies	s of beams, plates, and bars fo	or various
	Sound				

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
 - Scheme of Examination:

One Question from Part A - 40 Marks One Question from Part B - 40 Marks

Viva-Voce - 20 Marks

		B. E. MECHANICAL ENGIN	IEERING	
	Choice Based Credi	t System (CBCS) and Outco	ome Based Education (OBE)	
		SEMESTER - VI		
		HEAT TRANSFER LA	В	
Cour	se Code	18MEL67	CIE Marks	40
Teac	hing Hours/Week (L:T:P)	0:2:2	SEE Marks	60
Cred	its	02	Exam Hours	03
Cour	Course Learning Objectives:			
•	The primary objective of this of	course is to provide the fur	ndamental knowledge necessa	iry to
	understand the behavior of th	ermal systems.		
•	This course provides a detaile	d experimental analysis, in	cluding the application and he	eat transfer
	through solids, fluids, and vac	uum.		
•	Convection, conduction, and r	adiation heat transfer in o	ne and two dimensional stead	ly and unsteady
SI.	systems are examined.	Experiments		
No.			-	
		PART A		
1	Determination of Thermal Cond	uctivity of a Metal Rod.		
2	Determination of Overall Heat 1	ransfer Coefficient of a Co	mposite wall.	
3	Determination of Effectiveness	on a Metallic fin.		
4	Determination of Heat Transfer	Coefficient in free Convec	tion	
5	Determination of Heat Transfer	Coefficient in a Forced Co	nvention	
6	Determination of Emissivity of a	Surface.		
		PART B		
7	Determination of Stefan Boltzm	ann Constant.		
8	Determination of LMDT and Effe	ectiveness in a Parallel Flov	w and Counter Flow Heat Exch	angers.
9	Experiments on Boiling of Liquid	and Condensation of Vap	our.	
10	Performance Test on a Vapour (Compression Refrigeration		
11	Performance Test on a Vapour (Compression Air – Conditio	oner.	
12	Experiment on Transient Condu	ction Heat Transfer.		
	•	PART C (OPTIONAL	.)	
13	Analysis of steady and transient	heat conduction, tempera	ature distribution of plane wal	l and cylinder
	using Numerical approach (ANS	YS/CFD package).		
	с II (
14	Determination of temperature	distribution along a rectan	gular and circular fin subjected	d to heat loss
	through convection using Nume	erical approach (ANSYS/CF	D package).	
Cour	se Outcomes: At the end of the c	ourse, the student will be	able to:	
CO1:	Determine the thermal conduction	vity of a metal rod and ove	erall heat transfer coefficient o	of composite
	slabs.			
CO2:	Determine convective heat trans	fer coefficient for free and	I forced convection and correl	ate with
	theoretical values.			
CO3:	Evaluate temperature distributio	on characteristics of steady	and transient heat conductio	n through solid
	cylinder experimentally.			
CO4:	Determine surface emissivity of a	a test plate and Stefan Bol	tzmann constant	
CO5:	CO5: Estimate performance of a refrigerator and effectiveness of a fin and Double pipe heat exchanger			

Conduct of Practical Examination:

1. All laboratory experiments are to be included for practical examination.

2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.

3. Students can pick one experiment from the questions lot prepared by the examiners.

4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made

Scheme of Examination:

One Question from Part A - 40 Marks

One Question from Part B - 40 Marks

Viva-Voce - 20 Marks