[footnoteRef:1] [1:]

Parallelization of Tim Sort Algorithm Using MPI and CUDA
 Siva Thanagaraja1, Keshav Shanbhag2, Ashwath Rao B3[0000-0001-8528-1646] , Shwetha Rai4[0000-0002-5714-2611],and N Gopalakrishna Kini5
 Department of Computer Science & Engineering
Manipal Institute Of Technology
Manipal Academy Of Higher Education
Manipal,Karnataka,India-576104

Abstract— Tim Sort [1] is a sorting algorithm developed in 2002 by Tim Peters. It is one of the secure engineered algorithms, and its high level principle includes: The sequence S is divided into monotonic runs (i.e., non-increasing or non-decreasing subsequence of S), which should be sorted and should be combined pair wise according to some specific rules. To interpret and examine the merging strategy (meaning is that the order in which the merge and merge runs are performed) of Tim Sort, we have implemented it in MPI and CUDA environment. Finally, it can be seen difference in the execution time between serial Tim Sort and parallel Tim sort run in O (n log n) time [4].
[bookmark: PointTmp]Index Terms— Hybrid algorithm, Tim sort algorithm, Merge sort algorithm, Insertion sort algorithm.

INTRODUCTION
S
ORTING algorithm Tim Sort [4] was designed in 2002 by Tim Peters. It is a hybrid parallel sorting algorithm which combines two different sorting algorithms that includes insertion sort and merge sort. This algorithm is an effective method for well-defined instructions which is concealed as a finite list for evaluating Tim sort function [1]. Starting from an initial state and its information the guidelines defines a method that when execution continues through a limited number of next states which are well characterized, at the end providing output and ending at a last completion state.

 Tim sort works by identifying runs of least two elements. Element runs occurs either strictly descending (each element is lesser than its predecessor) or in non-descending (each element is greater than or equal to its predecessor) order. At its worst, it runs at comparable speed Merge Sort. In other words, it’s unexpectedly fast. In terms of space, Tim Sort is on the worse end of the spectrum; however the space consideration for most sorting algorithms is highly sparse. O(n) isn’t too difficult in most instances. Stability is the concept that when sorted, objects of equal value maintain their original order. If Tim sort follows unstable algorithm, it results in lose any reliability from your first sort when you run the second one. The following steps for Tim sort include:
(i)	Existing structure of the list is taken and n-1 operations are performed on the structure list that is either sorted or is in strictly-descending (reverse) order.
(ii)	Then the algorithm scans the structure list and finds “runs” of elements which is either in strictly descending or in ascending order.
(iii)	If the element runs takes place in strictly descending order, reverse operation of Tim sort occurs.
(iv)	If run is less then set “min run”, then the algorithm Tim sort performs Insertion Sort aggregate min run elements. Min run value is calculated based on the size of the array

The algorithm merge runs when value of the array exceeds the min run values and also keeps merges balanced.

Implementation
 Tim Sort is complex, even by algorithmic standards. The implementation is best broken down into parts.

Insertion Sort & Merge Sort
 Insertion Sort is one of the basic fundamental sorting algorithms. It runs through the array, and every time it encounters an object that is out of order (strictly less/more than the object earlier than it), it moves it into the suitable position in the already sorted array as shown in Fig. 1. Insertion Sort is popular for working very rapidly on already sorted arrays, as well as smaller arrays. In fact, we can see from Fig 1, that Insertion Sort has an impressive best case run time of O (n). In Tim Sort the best case for Insertion Sort is an already existing sorted array.
 [image:]
Fig 1.Insertion Sort Example (source [7])

Merge Sort on the other hand operates by way of a basic principle: it is extraordinarily easy to merge already sorted arrays. So, it splits a starting array in half over and over until it is nothing however single elements. Then it slowly rebuilds the primary array via merging those elements back together in sorted order as shown in Fig.2. Because we began from building blocks of size one, it was very easy to build preliminary sorted arrays. Then, it’s easy to merge them and this requires O(nlogn) time.

[image:]
Fig.2: Merge Sort Example (Source:[8])

Implementing Parallel Tim Sort
The way to comprehension Tim Sort's execution understands its utilization of runs. Tim Sort influences normally happening pre-sorted information to further its potential benefit. By pre-sorted it implies that consecutive components are on the whole expanding or diminishing. In insertion sort one element from the input elements is consumed in each iteration to find its correct position i.e., the position to which it belongs in a sorted array. It iterates the input elements by growing the sorted array at each iteration. It compares the current elements with largest value or smallest value in sorted array. If the current element is greater or lesser then it leaves the element place and moves to the next element else it finds its correct position in the sorted array and moves it to that position. In Merge Sort we divide an array of elements which is unsorted into sub array of equal halves until it can no more be divided. Then merge sort combines smaller sorted lists keeping the new list sorted. Note that insertion sort doesn’t indulge parallelism while merge sort can be implemented parallel.

First set a min run size. If input to Tim sort is lesser than min run then perform insertion sort. Otherwise perform merge sort in which every sub array obtained after divide operation in merge sort, once reaches min run size, it performs Insertion Sort as shown in Data Flow Diagram Fig 3.

Steps to implement parallel Tim sort:
 a)	Establish a minrun size that is a power of 2 (usually 32, never more than 64 or your Insertion Sort will lose efficiency)

 b)	Find a run in the first minrun of data.

 c)	If the run is not at least minrun in length, use Insertion Sort to grab subsequent or prior items and insert them into the run until it is the correct minimum size
.
 d)	Repeat until the entire array is divided into sorted subsections.

 e)	Use the latter half of Merge Sort to join the ordered arrays.

For Parallelism in CUDA
 In CUDA, we use threads to sort numbers as each thread controls one set of elements of size 64.First we divide the count of total input array elements by 64 and by this we will get count of threads .After getting number of threads, first divide entire array of size 64 for each threads to perform insertion sort where each thread perform insertion sort of their own array size in parallel. In second step, Groups of two threads will perform merging of their respective array elements obtained after insertion sort in parallel. So thereafter first thread of each group will be having array size of 128.Third step is again two threads group together to perform merging sort on their respective array of size 128 resulting in array size of 256 held by first thread of their group in parallel. Further same procedure of two threads grouping and merging technique is followed in parallel until we obtain a single array held by single thread, which is a final sorted array.

[image:]Fig.3: Data Flow Diagram of Tim Sort

Analysis
When the input size is Less than equal to 64, then the time used by MPI, CUDA and sequential program takes the same time. In MPI with more number of processors being created and in CUDA with threads the time taken by the computation DECREASES, but after a certain number of processors is already being created, if more number of processors are created then the computation time INCREASES.

The computation time is totally dependent on number of processes. Number of processes must be created according to the input Size for BETTER execution time.

PARELLEL ALGORITHM ANALYSIS:
1. For input being 10000 as size of the array, we evaluate the time taken based on the different number of processors as shown in Table 1.

Table 1: For N=10000, number of processes v/s time.
	N=10000

	Processes
	Time

	2
	0.028327

	4
	0.030933

	8
	0.021053

	16
	0.041526

	32
	0.024638

	64
	0.037315

	128
	0.035545

2. For input being 100000 as size of the array, we evaluate the time taken based on the different number of processors as shown in Table 2.
Table 2: For N=100000, number of processes v/s time.
	N=100000

	Processes
	Time

	2
	0.240311

	4
	0.244493

	8
	0.222464

	16
	0.229543

	32
	0.229677

	64
	0.234422

	128
	0.232665

 3.For input being 1000000 as size of the array, we evaluate the time taken based on the different number of processors as shown in Table3.

 Table 3: For N=1000000, number of processes v/s time.
	N=1000000

	Processes
	Time

	2
	2.119033

	4
	2.396746

	8
	2.313191

	16
	2.349319

	32
	2.231096

	64
	2.273086

	128
	2.297322

 While in sequential logic, when N=500 the time consumed is 2.59000sec in parallel for 8 processes is 0.006483 sec. So speedup is 380.88.

results
As input size is Less than equal to 64,Tim sort is performed and it undergoes Insertion Sort as shown in Fig.4.

Fig.4: Insertion Sort if size is less than 64

If input size is greater than 64, Tim sort is performed and it undergoes Merge Sort as shown in Fig.5.

 Fig.5: Merge Sort if size is greater than 64
[image:]Conclusion
[image:]Tim Sort is powerful. It is fast and stable, but perhaps most importantly it takes advantage of real world patterns and utilizes them to build a final product. Tim sort is a parallel hybrid sorting algorithm that takes in the features of merge sort and insertion sort. Merge sort is optimal on huge data set asymptotically, but on small data set overhead occurs. And for smaller data set insertion sort is best to be chosen. For better performance if divide and conquer algorithm is used then for smaller data set best optimal solution is obtained by using insertion sort. So a mixture of merge and insertion sort acts as a good hybrid sorting algorithm thereby allowing Tim sort to have far negligible than O(n log n) comparison, because it takes benefit that sub array is may already be sorted.

References
[1] D. E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and Searching. Addison Wesley Longman Publish. Co.,
Redwood City, CA, USA, 1998
[2] T. Peters. Timsort description, accessed june 2015. http://svn.python.org/projects/python/trunk/Objects/listsort.txt
[3] http://en.wikipedia.org/wiki/Timsort [Accesssed on :23-Sept-2019]
[4] http://stromberg.dnsalias.org/strombrg/sort-comparison [Accessed on:23-Sept-2019]
[5] G. Jost, H. Jin, D. Mey, F. Hatay. Comparing the OpenMP, MPI, andhybrid programming paradigms on an SMP cluster. NAS Technical Report NAS-03-019, November 2003.
[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein,“Introduction to Algorithms”. MIT Press, Cambridge, MA, 2ndEdition, 2001.
[7] https://media.geeksforgeeks.org/wpcontent/uploads/insertionsort.png[Acccessed On:22-october-2019]
[8] https://en.wikipedia.org/wiki/Merge_sort#/media/File:Merge_sort_alg orithm_diagram.svg [Accessed On:03-October-2019]

image3.jpeg
Input Elements

True

Define No. Of
Process

Define No. Of
Process
l Divide the elements by

Insertion Sort
no.of Processes

! !

Send the divided elements
Print Sorted o

to respective Process
Array

v

Individually Sorted chunks
received

v

Sorted Individual Chunks
are further sorted by
merge by root

Print Sorted
Array

—

image4.jpeg
Screenshot s = @) 415PM

student@lplab-Lenovo-Product:~/Desktop$ mpicc -o mergec mergec.c
student@lplab-Lenovo-Product:~/Desktop$ mpiexec -n 8 ./mergec 500
merge sort
186 19 233 341 354 90 199 131 311 276 476 238 371 108 483 486 58 96 332 83 468 244 17 362 2 135 423 468 109 276 493 148 295 78 489 150 168 40
81 479 311 103 69 34 63 53 20 121 1 204 57 470 448 74 184 302 209 459 271 171 235 264 319 31 342 308 33 10 348 314 342 159 417 411 193 480 31¢
65 453 170 269 10 492 217 436 176 20 146 488 291 317 75 407 136 106 101 296 139 463 144 305 157 156 74 69 201 406 237 267 360 407 36 222 251 1
6 159 428 478 157 268 121 326 343 28 314 302 481 110 293 444 106 99 102 262 173 23 316 432 260 83 292 20 471 366 271 429 25 51 407 182 171 28
15 408 174 169 389 284 462 334 391 61 436 5 87 311 321 19 423 256 163 295 228 29 419 9 55 470 417 89 494 445 450 9 354 124 178 243 261 492 42
152 54 217 9 493 28 183 12 452 439 27 247 19 56 18 29 463 489 446 53 335 243 355 344 97 479 374 193 240 366 122 244 272 192 106 117 220 289 1
9 24 228 156 124 100 65 142 129 28 483 427 433 318 22 288 14 120 120 240 165 212 459 139 309 231 331 415 349 404 204 330 428 284 339 52 236 2°
47 217 284 30 144 218 349 167 358 215 139 478 456 156 191 415 295 0 498 127 267 199 31 323 30 311 107 221 216 344 477 263 61 113 293 58 331 4
4 77 42 210 68 20 166 224 63 433 19 415 431 498 182 131 381 5 13 45 465 86 261 309 63 24 222 176 169 132 360 16 61 402 226 129 274 244 353 33¢
177 225 253 460 75 436 91 309 293 104 354 258 190 467 419 105 343 142 134 12 126 346 380 188 248 106 317 374 202 23 212 231 248 466 192 175 2¢
283 484 47 240 196 306 282 9 225 240 352 219 374 217 198 220 97 386 320 56 55 194 258 430 259 496 178 77 34 206 331 317 42 230 409 233 388 44
242 466 284 447 37 10 164 235 82 261 473 254 317 381 300 428 311 59 270 342 136 304 48 319 473 90 50 235 175 290 279 418 256 415 217 294 277 :
1 381 211 494 355 465 164 236 265 92 399 177 214 241 313 18 289 485 343 232 387 78 407 177 209 177 286 476 394 80 253 275 461 464 270 168 281
86 256 399 230 156 76
This is the sorted array: 666 6612558999910 16 10 12 12 13 14 15 16 17 18 18 19 19 19 19 20 20 20 20 22 23 23 24 24 25 27 28 28 2
28 29 29 30 30 31 31 33 34 34 36 37 40 42 42 44 45 47 47 48 50 51 52 53 53 54 55 55 56 56 57 58 58 59 61 61 61 63 63 63 65 65 68 69 69 74 74
5 75 77 77 78 78 80 82 83 83 86 87 89 90 90 91 92 96 97 97 99 100 101 162 103 104 165 106 166 106 106 106 107 108 109 110 113 117 120 120 121
21 122 124 124 126 127 129 129 129 131 131 132 134 135 136 136 139 139 139 142 142 144 144 146 148 150 152 156 156 156 157 157 159 159 163 164
164 165 166 167 168 168 169 169 170 171 171 173 174 175 175 176 176 177 177 177 177 178 178 182 182 183 184 186 188 190 190 191 192 192 193 1
194 198 199 199 2601 202 204 204 206 209 209 210 211 212 212 214 215 216 217 217 217 217 217 218 219 220 220 221 222 222 224 225 225 226 228 2
8 230 231 231 232 233 233 235 235 235 236 236 237 238 240 240 240 240 241 242 243 243 244 244 244 247 248 248 251 253 253 254 254 256 256 256
56 258 258 259 260 261 261 261 262 263 264 265 267 267 268 269 270 270 270 271 271 272 274 275 276 277 279 281 281 282 283 284 284 284 284 28¢
286 288 289 289 290 291 292 293 293 293 294 295 295 295 296 300 302 3062 304 305 306 308 309 309 309 311 311 311 311 311 313 314 314 316 316 31
317 317 317 318 319 319 320 321 323 326 330 331 331 331 332 334 335 338 339 341 342 342 342 343 343 343 344 344 346 348 349 349 352 353 354 3
4 354 355 355 358 360 360 362 366 366 371 374 374 374 380 381 381 381 381 386 387 388 389 391 394 399 402 404 406 407 407 407 407 408 409 411
15 415 415 415 417 417 418 419 419 423 423 427 428 428 428 429 429 430 431 432 433 433 436 436 436 439 444 445 446 447 448 450 452 453 456 45¢
459 460 461 462 463 463 464 465 465 466 466 467 468 468 470 470 470 471 473 473 476 477 478 478 479 479 480 481 483 483 484 485 486 488 489 4¢
490 492 492 493 493 494 494 494 498 498 0: 8 processors; 0.006665 secs

image5.jpeg
'student@lplab-Lenovo-Product:~/Desktop$ mpicc -o mergec mergec.c
student@lplab-Lenovo-Product:~/Desktop$ mpiexec -n 1 ./mergec 50

INSERTION SORT:
43 20 5 43 36 15 35 24 15 32 14 1 14 8 14 37 27 20 36 18 33 3 25 24 40 13 7 30 © 21 32 45 43 37 40 30 4 25 6 19 8 20 23 24 28 37 11 8 10 49

| 'sorted array

©134567888 10 11 13 14 14 14 15 15 18 19 20 20 20 21 23 24 24 24 25 25 27 28 30 30 32 32 33 35 36 36 37 37 37 40 40 43 43 43 45 49
student@lplab-Lenovo-Product:~/Desktop$ [l

image1.png
4] [3] [2] [Oo] 2] (] 51 [e
‘Ep 2 1 [0o] (2]] (51 (e
0] (2]] 5] [e
21 [3][4 2] 1] [5][6
2 | 3] [&] Mo 1] [5][6
5] &
1] 2] 3] [(6
AIEEIEAE
1213 [2][5][6][10][12

image2.jpeg
3827 (43|3[9(82]|10
3827 (43| 3 918210
38| 27 43| 3 9182 10
IR AN N
38 27 43 B 9 82 10
Ny A L
27|38 3143 9182 10
3127 (38|43 911082
319]10(27|38|43|82

